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HPC for Al & Environmental
impact of computation



Introduction to Al applications



Al Renaissance: Neural Networks

+ 2012: Al renaissance brought by increased data availability
and computation ressources

» breakthroughs in multiple domains
* many innovations: algorithms, specialized processors,
optimizations

* Most systems use neural networks:

+ Training (stochastic gradient descent + backpropagation)
* Inference (forward pass)

* For both, the bottleneck is matrix multiplication
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* Explain why dense linear algebra (GEMM) dominates NN
compute

* Core SGEMM kernel ideas and common optimizations

» Use Roofline model to identify bottlenecks

+ Understand mixed precision & quantization tradeoffs for
energy/perf
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SGEMM

Single-precision General Matrix-Matrix multiplication (SGEMM):

RES=AxB+C

SGEMM

. C.. - | RES...
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Naive SGEMM implementation (pseudocode)

// Initialize RES to C

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
RES[il[j]1 = Cl[il[jl;

// Matrix multiply
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
for (k = 0; k < K; k++) {
RES[i] [j] += A[i]l[x] * B[k][j1;
}

* FLOPS:2 x M x N x K
« Memory: 4 X (M x K+ K x N+ M x N) bytes
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Locality issues in naive SGEMM

order in memory —

bl 1 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

« Stride in accessing B (column-major)
» Poor spatial locality
» Difficult to vectorize
+ Cache misses for large matrices (reuse distance too large)

+ Low arithmetic intensity: ~ 0.5 FLOP/byte for large matrices
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Reordering loops (i,k,)j)

* Sums RES[i][j] += A[i][k] * B[k][j]; are independent —
reorder loops:

for (i = 0; i < M; i++)
for (k = 0; k < K; k++)
for (j = 0; j < N; j++)
RES[i] [j]1 += A[i]l[k] * B[kI[j];

* A[i] [x] does not depend on j — load once, reuse N times

* RES and B accesses are now stride-1 (row-major)

for (i = 0; i < M; i++)
for (k = 0; k < K; k++) {
const float temp = A[i] [k];
for (j = 0; j < N; j++)
RES[i][j] += temp * B[k][j];
}

* Better spatial locality and easier to vectorize
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Inner loop assembly for (i,k,j) ordering with AVX (8 float in a vector):

.loop: # Inner loop
vmovss xmmO, DWORD PTR A[i] [k] # Load A[i] [k]
vbroadcastss ymmO, xmmO # Broadcast scalar to

all lanes

vmovaps ymml, YMMWORD PTR B[k] [j] # Load B[k][j:j+8]
vimadd231ps ymm2, ymml, ymmO # Fused multiply-add
vmovaps YMMWORD PTR RES[i] [j], ymm2 # Store RES[i] [j:j+8]
add j, 8 # Increment j by 8 (
vector width)

cmp j, N # Compare j with N
jl .loop # Loop if j < N
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Problems with (i,k,j) ordering

» Temporal locality analysis:

+ GOOD: A[i][k] reused in the inner loop, reuse distance 1.
+ MEDIUM : For a fixed (i, j), each RES[i][J] revisited once per k.
So reuse distance K (one full row).
« To keep RES in cache between uses you would need cache > K x 4B
* BAD : For a fixed (k, j), B[k][j] used once per i. So reuse distance
K x N (entire B matrix).
« To keep B in cache between uses you would need cache
> K x N x4B
« Still poor temporal locality for large matrices

 Solution: tiling / blocking to increase reuse
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Blocking (tiling)

* |dea: operate on sub-matrices blocks that fit in cache

[An Am] % [Bn 312} _ [AuBn + A19Byy A1 Bis + A12B22}
Ay Agy By, By, Ay By + A9y By Aoy Byg + Ay Boy

#define BS 64 // Block size
// Loop over blocks
for (ii = 0; ii < M; ii += BS)
for (kk = 0; kk < K; kk += BS)
for (jj = 0; jj < N; jj += BS)

// Operate on blocks A[ii:ii+BS, kk:kk+BS],
// Blkk:kk+BS, jj:jj+BS], RES[ii:ii+BS, jj:jj+BS]
for (i = ii; i < min(ii+BS, M); i++)
for (k = kk; k < min(kk+BS, K); k++)
for (j = jj; j < min(jj+BS, N); j++)
RES[i] [j]1 += A[il[k] = B[k][j];
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Parallelization

* Each block operation is independent — parallelize over blocks

#pragma omp parallel for collapse(3)
for (ii = 0; ii < M; ii += BS)
for (jj = 0; jj < N; jj += BS)
for (kk = 0; kk < K; kk += BS)
// Block multiplication as before

* Each thread works on its own block — no false sharing

* Synchronization only at the end of the parallel region

NUMA considerations: pin threads to cores, allocate memory

close to threads

» Load balancing: static scheduling usually works well for large
matrices
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Libraries & autotuners

* Highly optimized SGEMM implementations exist:
* OpenBLAS, Intel MKL for CPU
» NVIDIA cuBLAS for GPU

» Implementations use blocking, vectorization, parallelization,
and many architecture-specific optimizations

* Libraries are carefully tuned for different sizes and shapes of
matrices.

« Autotuners (e.g.,, ATLAS, TVM, MLKAPS) can generate
optimized code for specific hardware and problem sizes.
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Roofline model - Definitions

* Hypothesis: performance is limited by either compute or
memory bandwidth

» performance: FLOP/s (vertical axis)
* memory bandwidth: Bytes/s
 arithmetic intensity: FLOP/byte (horizontal axis)

« Simple visual model to understand bottlenecks
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Roofline model - Bounds
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Roofline model - SGEMM analysis

Roofline Model - SGEMM Versions
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Environmental impact of
computation




Introduction

* Major ecological crisis: French roadmap targets carbon
neutrality in 2050 (Stratégie Nationale Bas Carbone).

* Requires a 40% energy consumption reduction.

* HPC part of the solution: modeling and improving complex
systems

* HPC part of the problem: Frontier system ot ORNL

« More than 1018 floating point operations per second

« Consumes 21IMW: the energy of a small town (16 000 french
houses)
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Environmental impact of computation

* The ICT sector consumes & 5% of the energy wordwide
* It accounts for 1.8% - 2.8% of emitted GHG [Freitag, 2021]:
» Accounts for embodied emissions.

» Shadow energy during the whole life-cycle: mining, fabrication,
transportation, recycling.

+ GHG emmissions are only one of the sustainability issues

» rare-earth mining and waste disposal (eg. Agbogbloshie).

* human-right abuses, health issues, pollution.

* This presentation focus on energy consumption of HPC
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What about renewable energies?

* Low-carbon electricity is a limited ressource

* Decarbonation — huge increase in electricity demand
» Heating, Transportation, Industry

+ Computing will compete for low-carbon electricity.
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Energy consumption of HPC




Evolution of processing units [Batten, 2023]
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Dennard’s scaling 1970-2005

CMOS Power P =1/2.C.V2.f+V .1,
—P,—/ N — e’

dynamic Pstotlc

For each generation, transistors dimensions reduced by 30%,
* Voltage and capacitance reduced by 30%
* Frequency increases: x1.4 ~ 1/0.7
+ Surface halved: 0.5 ~ 0.7 x 0.7
« Power halved: AP = 0.7 x 0.7% x 1/0.7 ~ 0.5

Power per surface unit remains constant but manufacturers
double number of transistors and frequency increases:

» Power efficiency doubles every 1.57 years

» Total power increases
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Multicore 2005-2020

« At current scale, leak currents start increasing (Pyoiic /)
Power wall slows Dennard’s scaling.

+ Computing demand — parallelism and specialization.
* Number of cores increases exponentially since 2005.

» Power efficiency still improving:
« selectively turning-off inactive transistors;
» architecture design optimizations;

» software optimizations.
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Al Accelerators 2020-2024

» For domain specific applications, such as Al, specialized
accelerators are used

* Memory and compute units tuned for a specific problem (matrix
multiplication) ;

» Faster and better power efficiency: GPU, TPU, FPGA, ASIC.
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Analysis of TOP-100 HPC systems

Efficiency (GFlop/s/W)
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Figure 6: image
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Rebound effects

* In 1865, Jevons shows that steam engine improvements
translate into increased coal consumption.

» In HPC, efficiency gains contribute to the rising computation
demand.

1. net increase of the total power consumption.
* Rebound effects for data-centers [Masanet, 2020]

1. 6% increase in energy consumption from 2010 to 2018
(255 % increase in nodes).

* Indirect rebound effects: computation advances can
contribute to the acceleration of other fields.
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Al energy and computation costs




Training cost doubles every 3.4 months [OpenAl, 2020]
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Should we study training or inference?

* Training: huge cost but done once
« GPT3, 175 billion parameters, ~ 314 ZettaFLOP
» GPT4, 1.7 trillion parameters

* Inference: millions of users and requests

+ 80-90% cost of a deployed Al system is spend on inference
[NVIDIA, 2019]
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Inference cost - Diminishing returns for computer vision
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More frugal computing?




Smaller precision / Smaller models for Al
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LLM success of smaller models (Llama, Chinchillo) fine-tuned for
specific tasks with LoRA.
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Tradeoff: Model complexity - Cost - Explainability

* Inference cost grows with model complexity

» Simpler models are often more interpretable

» Traditional science also prefers simpler models

* DNN not necessary for all tasks
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DVFS study of LU decomposition
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When accounting for the whole system
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Need for an interdisciplinary discussion

* Al / HPC can contribute towards sustainability (eg.

acceleration of weather forecast models) ... but its energy cost
must be reduced

« Efficiency:
* Improve hardware and software
» Use smaller models / smaller precision
... subject to rebound effects
* Frugality in computing:
» Balance computation cost vs. outcomes for each task
+ Choose the right sized model

» Assess the environmental impact
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Exemple: e-health solution in Tanzania [d’Acremont, 2021]

Treatment of febrile children illnesess in dispensaries.
* IMCI: Paper-based decision tree WHO
* e-POCT CART tree tailored to real data on a standalone tablet

» Final CART tree easy to interpret and manually checked

* Randomized-trial — better clinical outcomes and antibiotic
prescription reduction

» Sophisticated Al that continuously collects patient data and
adapts the algorithm ?

* Increase in hardware and computation costs.

» Loss in explainability and verification of the algorithm.
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References - HPC for Al applications

+ S. Boehm Optimizing, How to Optimize a CUDA Matmul Kernel

35/36


https://siboehm.com/articles/22/CUDA-MMM

References - Environmental impact of computation
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