
L5: HPC for AI applications & Environmental impact
of computation

P. de Oliveira Castro, M. Jam
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/36



1. HPC for AI & Environmental impact of computation

2. Introduction to AI applications

3. Environmental impact of computation

4. Energy consumption of HPC

5. AI energy and computation costs

6. More frugal computing?

2/36



HPC for AI & Environmental
impact of computation



Introduction to AI applications



AI Renaissance: Neural Networks

• 2012: AI renaissance brought by increased data availability
and computation ressources
• breakthroughs in multiple domains
• many innovations: algorithms, specialized processors,
optimizations

• Most systems use neural networks:
• Training (stochastic gradient descent + backpropagation)
• Inference (forward pass)

• For both, the bottleneck is matrix multiplication

3/36



Objectives

• Explain why dense linear algebra (GEMM) dominates NN
compute

• Core SGEMM kernel ideas and common optimizations
• Use Roofline model to identify bottlenecks
• Understand mixed precision & quantization tradeoffs for
energy/perf

4/36



SGEMM

Single-precision General Matrix-Matrix multiplication (SGEMM):

𝑅𝐸𝑆 = 𝐴 × 𝐵 + 𝐶

M

K

N

K

C... RES...A

B

+ =x

SGEMM

Figure 1: SGEMM

5/36



Naive SGEMM implementation (pseudocode)

// Initialize RES to C
for (i = 0; i < M; i++)

for (j = 0; j < N; j++)
RES[i][j] = C[i][j];

// Matrix multiply
for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) {
for (k = 0; k < K; k++) {

RES[i][j] += A[i][k] * B[k][j];
}

}

• FLOPS: 2 × 𝑀 × 𝑁 × 𝐾
• Memory: 4 × (𝑀 × 𝐾 + 𝐾 × 𝑁 + 𝑀 × 𝑁) bytes

6/36



Locality issues in naive SGEMM

order in memory →

⎡⎢⎢
⎣

𝑏11 𝑏12 𝑏13 𝑏14
𝑏21 𝑏22 𝑏23 𝑏24
𝑏31 𝑏32 𝑏33 𝑏34
𝑏41 𝑏42 𝑏43 𝑏44

⎤⎥⎥
⎦

• Stride in accessing B (column-major)
• Poor spatial locality
• Difficult to vectorize
• Cache misses for large matrices (reuse distance too large)

• Low arithmetic intensity: ≈ 0.5 FLOP/byte for large matrices

7/36



Reordering loops (i,k,j)

• Sums RES[i][j] += A[i][k] * B[k][j]; are independent →
reorder loops:

for (i = 0; i < M; i++)
for (k = 0; k < K; k++)

for (j = 0; j < N; j++)
RES[i][j] += A[i][k] * B[k][j];

• A[i][k] does not depend on j → load once, reuse N times

• RES and B accesses are now stride-1 (row-major)
for (i = 0; i < M; i++)

for (k = 0; k < K; k++) {
const float temp = A[i][k];
for (j = 0; j < N; j++)

RES[i][j] += temp * B[k][j];
}

• Better spatial locality and easier to vectorize

8/36



Vectorization

Inner loop assembly for (i,k,j) ordering with AVX (8 float in a vector):
.loop: # Inner loop

vmovss xmm0, DWORD PTR A[i][k] # Load A[i][k]
vbroadcastss ymm0, xmm0 # Broadcast scalar to
all lanes
vmovaps ymm1, YMMWORD PTR B[k][j] # Load B[k][j:j+8]
vfmadd231ps ymm2, ymm1, ymm0 # Fused multiply-add
vmovaps YMMWORD PTR RES[i][j], ymm2 # Store RES[i][j:j+8]
add j, 8 # Increment j by 8 (
vector width)
cmp j, N # Compare j with N
jl .loop # Loop if j < N

9/36



Problems with (i,k,j) ordering

• Temporal locality analysis:
• GOOD: 𝐴[𝑖][𝑘] reused in the inner loop, reuse distance 1.
• MEDIUM : For a fixed (𝑖, 𝑗), each 𝑅𝐸𝑆[𝑖][𝑗] revisited once per k.
So reuse distance 𝐾 (one full row).
• To keep RES in cache between uses you would need cache ≥ 𝐾 × 4𝐵

• BAD : For a fixed (𝑘, 𝑗), 𝐵[𝑘][𝑗] used once per i. So reuse distance
𝐾 × 𝑁 (entire B matrix).
• To keep B in cache between uses you would need cache

≥ 𝐾 × 𝑁 × 4𝐵

• Still poor temporal locality for large matrices

• Solution: tiling / blocking to increase reuse

10/36



Blocking (tiling)

• Idea: operate on sub-matrices blocks that fit in cache

[𝐴11 𝐴12
𝐴21 𝐴22

]×[𝐵11 𝐵12
𝐵21 𝐵22

] = [𝐴11𝐵11 + 𝐴12𝐵21 𝐴11𝐵12 + 𝐴12𝐵22
𝐴21𝐵11 + 𝐴22𝐵21 𝐴21𝐵12 + 𝐴22𝐵22

]

#define BS 64 // Block size
// Loop over blocks
for (ii = 0; ii < M; ii += BS)

for (kk = 0; kk < K; kk += BS)
for (jj = 0; jj < N; jj += BS)

// Operate on blocks A[ii:ii+BS, kk:kk+BS],
// B[kk:kk+BS, jj:jj+BS], RES[ii:ii+BS, jj:jj+BS]
for (i = ii; i < min(ii+BS, M); i++)

for (k = kk; k < min(kk+BS, K); k++)
for (j = jj; j < min(jj+BS, N); j++)

RES[i][j] += A[i][k] * B[k][j];

11/36



Parallelization

• Each block operation is independent → parallelize over blocks
#pragma omp parallel for collapse(3)
for (ii = 0; ii < M; ii += BS)

for (jj = 0; jj < N; jj += BS)
for (kk = 0; kk < K; kk += BS)

// Block multiplication as before

• Each thread works on its own block → no false sharing
• Synchronization only at the end of the parallel region
• NUMA considerations: pin threads to cores, allocate memory
close to threads

• Load balancing: static scheduling usually works well for large
matrices

12/36



Libraries & autotuners

• Highly optimized SGEMM implementations exist:
• OpenBLAS, Intel MKL for CPU

• NVIDIA cuBLAS for GPU

• Implementations use blocking, vectorization, parallelization,
and many architecture-specific optimizations

• Libraries are carefully tuned for different sizes and shapes of
matrices.

• Autotuners (e.g., ATLAS, TVM,MLKAPS) can generate
optimized code for specific hardware and problem sizes.

13/36



Roofline model - Definitions

• Hypothesis: performance is limited by either compute or
memory bandwidth
• performance: FLOP/s (vertical axis)
• memory bandwidth: Bytes/s
• arithmetic intensity: FLOP/byte (horizontal axis)

• Simple visual model to understand bottlenecks

14/36



Roofline model - Bounds

Figure 2: Roofline SGEMM

• Compute bound: horizontal line at peak FLOP/s
• Memory bound: sloped line with slope = memory bandwidth

• Flop/s
Flop/Byte = Byte/s

15/36



Roofline model - SGEMM analysis

Figure 3: Roofline SGEMM

• Interactive demonstration and analysis

16/36



Environmental impact of
computation



Introduction

• Major ecological crisis: French roadmap targets carbon
neutrality in 2050 (Stratégie Nationale Bas Carbone).

• Requires a 40% energy consumption reduction.

• HPC part of the solution: modeling and improving complex
systems

• HPC part of the problem: Frontier system at ORNL

• More than 1018 floating point operations per second

• Consumes 21MW: the energy of a small town (16 000 french
houses)

Figure 4: image

17/36



Environmental impact of computation

• The ICT sector consumes ≈ 5% of the energy wordwide

• It accounts for 1.8% - 2.8% of emitted GHG [Freitag, 2021]:
• Accounts for embodied emissions.

• Shadow energy during the whole life-cycle: mining, fabrication,
transportation, recycling.

• GHG emmissions are only one of the sustainability issues
• rare-earth mining and waste disposal (eg. Agbogbloshie).

• human-right abuses, health issues, pollution.

• This presentation focus on energy consumption of HPC

18/36



What about renewable energies?

• Low-carbon electricity is a limited ressource

• Decarbonation → huge increase in electricity demand
• Heating, Transportation, Industry

• Computing will compete for low-carbon electricity.

19/36



Energy consumption of HPC



Evolution of processing units [Batten, 2023]

Transistors
(Thousands)

C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun,L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]

1975 1980 1985 1990 1995 2000200520102015

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

2020 2025

10
8

Pipelining
& Caches

Superscalar
Execution

Superscalar Out-of-Order
Execution

Aggressive Superscalar
Out-of-Order Execution

Single-Core: Dennard's scaling

Power (W)

Frequency (MHz)

SPECint (single-core)

Number of 
Cores

Multi-Core

SPECrate
(4-7 cores)

Parallelization
&

Specialization

Number of 
Accelerators

Accelerator

Figure 5: image

20/36



Dennard’s scaling 1970-2005

CMOS Power 𝑃 = 1/2.𝐶.𝑉 2.𝑓⏟⏟⏟⏟⏟
𝑃dynamic

+ 𝑉 .𝐼leak⏟
𝑃static

For each generation, transistors dimensions reduced by 30%,

• Voltage and capacitance reduced by 30%

• Frequency increases: ×1.4 ≈ 1/0.7
• Surface halved: 0.5 ≈ 0.7 × 0.7
• Power halved: Δ𝑃 = 0.7 × 0.72 × 1/0.7 ≈ 0.5

Power per surface unit remains constant but manufacturers
double number of transistors and frequency increases:

• Power efficiency doubles every 1.57 years

• Total power increases

21/36



Multicore 2005-2020

• At current scale, leak currents start increasing (𝑃static ↗).
Power wall slows Dennard’s scaling.

• Computing demand → parallelism and specialization.

• Number of cores increases exponentially since 2005.

• Power efficiency still improving:
• selectively turning-off inactive transistors;

• architecture design optimizations;

• software optimizations.

22/36



AI Accelerators 2020-2024

• For domain specific applications, such as AI, specialized
accelerators are used
• Memory and compute units tuned for a specific problem (matrix
multiplication) ;

• Faster and better power efficiency: GPU, TPU, FPGA, ASIC.

23/36



Analysis of TOP-100 HPC systems

Figure 6: image

Efficiency and Peak computation exponential increase.
24/36



Rebound effects

• In 1865, Jevons shows that steam engine improvements
translate into increased coal consumption.

• In HPC, efficiency gains contribute to the rising computation
demand.
1. net increase of the total power consumption.

• Rebound effects for data-centers [Masanet, 2020]
1. 6% increase in energy consumption from 2010 to 2018
(255 % increase in nodes).

• Indirect rebound effects: computation advances can
contribute to the acceleration of other fields.

25/36



AI energy and computation costs



Training cost doubles every 3.4 months [OpenAI, 2020]

Figure 7: image 26/36



Should we study training or inference?

• Training: huge cost but done once
• GPT3, 175 billion parameters, ≈ 314 ZettaFLOP

• GPT4, 1.7 trillion parameters

• Inference: millions of users and requests
• 80-90% cost of a deployed AI system is spend on inference
[NVIDIA, 2019]

27/36



Inference cost - Diminishing returns for computer vision

Exponential increase in compute for linear accuracy gain
[Desislavov, 2023 / Schwartz, 2019]

28/36



More frugal computing?



Smaller precision / Smaller models for AI

Figure 8: image

LLM success of smaller models (Llama, Chinchilla) fine-tuned for
specific tasks with LoRA.

29/36



Tradeoff: Model complexity - Cost - Explainability

• Inference cost grows with model complexity

• Simpler models are often more interpretable
• Traditional science also prefers simpler models

• DNN not necessary for all tasks

30/36



DVFS study of LU decomposition

0.8

1

1.2

1.4

1.6

1.8

2

2.2
2.4

2.6
2.8

3
3.2

3.4
3.6

50

75

100

1.5 1.8 2.1 2.4

Energy efficiency (GFLOP / J) 

P
e

rf
o

rm
a

n
c
e

 (
G

F
L
O

P
 /

 s
) 

1 2 3
Frequency (GHz)

Figure 9: image

• Knights Mill 72 cores

• Intel MKL dgetrf

• 𝑛 ∈ [1000, 3000]
• RAPL estimation

Save energy by computing slower: 1GHz

Thomas Roglin, M1 UVSQ/INTEL internship 2023

31/36



When accounting for the whole system

0.8

1

1.2

1.4

1.6

1.8

2

2.2
2.4

2.6
2.8

3
3.2

3.4

50

75

100

0.6 0.7 0.8 0.9 1.0 1.1

Energy efficiency (GFLOP / J) 

P
e

rf
o

rm
a

n
c
e

 (
G

F
L
O

P
 /

 s
) 

1 2 3
Frequency (GHz)

Figure 10: image

• Model: RAPL + 40W

• Optimal 2.6 GHz: compute faster and turn off machine

• Saves idle power (race to idle)

Thomas Roglin, M1 UVSQ/INTEL internship 2023

32/36



Need for an interdisciplinary discussion

• AI / HPC can contribute towards sustainability (eg.
acceleration of weather forecast models) … but its energy cost
must be reduced

• Efficiency:
• Improve hardware and software

• Use smaller models / smaller precision

… subject to rebound effects

• Frugality in computing:
• Balance computation cost vs. outcomes for each task

• Choose the right sized model

• Assess the environmental impact

33/36



Exemple: e-health solution in Tanzania [d’Acremont, 2021]

Treatment of febrile children illnesess in dispensaries.

• IMCI: Paper-based decision tree WHO

• e-POCT CART tree tailored to real data on a standalone tablet
• Final CART tree easy to interpret and manually checked

• Randomized-trial → better clinical outcomes and antibiotic
prescription reduction

• Sophisticated AI that continuously collects patient data and
adapts the algorithm ?
• Increase in hardware and computation costs.

• Loss in explainability and verification of the algorithm.

34/36



References - HPC for AI applications

• S. Boehm Optimizing, How to Optimize a CUDA Matmul Kernel

35/36

https://siboehm.com/articles/22/CUDA-MMM


References - Environmental impact of computation

• Jones, Nicola (2018) ‘How to stop data centres from gobbling
up the world’s electricity’. Nature, 561(7722), pp. 163–167.

• Freitag, Charlotte, Berners-Lee, Mike, Widdicks, Kelly, Knowles,
Bran, et al. (2021) ‘The real climate and transformative impact
of ICT: A critique of estimates, trends, and regulations’.
Patterns, 2(9), p. 100340. online

• Masanet, Eric, Shehabi, Arman, Lei, Nuoa, Smith, Sarah and
Koomey, Jonathan (2020) ‘Recalibrating global data center
energy-use estimates’. Science, 367(6481), pp. 984–986.

• Schwartz, Roy, Dodge, Jesse, Smith, Noah A. and Etzioni, Oren
(2019) ‘Green AI’. arXiv:1907.10597

• Amodei, Dario, Hernandez, Danny, Sastry, Girish, Clark, Jack,
et al. (2018) ‘AI and compute. OpenAI’.
https://openai.com/blog/ai-and-compute/

• D’Acremont presentation: https://youtu.be/oKcy_cY0QOw
36/36

https://www.sciencedirect.com/science/article/pii/S2666389921001884
http://arxiv.org/abs/1907.10597
https://openai.com/blog/ai-and-compute/
https://youtu.be/oKcy_cY0QOw

	HPC for AI & Environmental impact of computation
	Introduction to AI applications
	Environmental impact of computation
	Energy consumption of HPC
	AI energy and computation costs
	More frugal computing?

