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Experimental Design, Profiling,
and Performance/Energy
Optimization



Plot Example - Intro

In the following slides, you will be shown a series of plots; mainly
taken from the PPN course reports of previous students.

For each plot:

« Try to understand what is represented
* Explain what you observe
» Give a definitive conclusion from the data shown

Raise your hands when ready to propose an explanation.
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Figure 1: PPN Example - (No Caption)
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Plot Example (2)
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Figure 2: PPN Example - (No Caption)
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Plot Example (3)

Training and Validation accuracy over epochs for New (New) and Reference (Ref) models
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Figure 3: PPN Example - (No Caption)
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Plot Example (4)
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Figure 4: PPN Example - “Récapitulatif des optimisations faites"
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Plot Example (5)

Cache Latency
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Figure 5: PPN Example - “Nouveau tracé de la latence cache”
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Plot Example (6)

MLKAPS (GA-Adaptive) over Reference Performance distribution for n = 1774, m = 2806
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Figure 6: Prof Example - (KNM): (o) Speedup map of GA-Adaptive (7k
samples) over the Intel MKL hand-tuning for dgetrf (LU), higher is better.
(b) Analysis of the slowdown region (performance regression). (c) Analysis
of the high speedup region. 3,000 random solutions were evaluated for
each distribution.
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Plot Example (7)
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Figure 7: Prof Example - (SPR): Geometric mean Speedup (higher is better)
against the MKL reference configuration on dgetrf (LU), depending on the
sampling algorithm. 46x46 validation grid. 7k/15k/30k denotes the
samples count. GA-Adaptive outperforms all other sampling strategies for
auto-tuning. With 30k samples it achieves a mean speedup of x 1.3 of the
MKL dgetrf kernel.
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Plot Example - What makes a good plot

Ask yourself:

* What do | want to communicate ?

* What data do | need ?

* Is my plot understandable in ~10 seconds ?

+ Is my plot self-contained ?

« |s the context, environment, and methodology clear ?
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Plot Example - Summary

HPC is a scientific endeavour; data analysis and plotting are
essential.

* Plots drive decisions
» Plots make results trustworthy
* Plots explain complex behaviors

Datasets are large, multi-disciplinary, and often hard to
reproduce.
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Experimental Methodology - Workflow
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Figure 8: Typical experimental workflow
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Statistical significance - Introduction

Computers are noisy, complex systems:

* Thread scheduling is non deterministic -> runtime varies
between runs.

* Dynamic CPU frequency (Turbo/Boost)

+ Systems are heterogeneous (CPU/GPU, dual socket, numa
effects, E/P cores)

+ Temperature/thermal throttling can alter runtime

How can we make sure our experimental measurements are
reliable and conclusive?
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Statistical significance - Warm-up effects

Systems need time to reach steady-state:

Stability of Time Measurements for a Dummy Kernel
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On a laptop: Mean = 0.315 ms, CV = 13.55%

We need “warm-up" iterations to measure stable performance and
skip cold caches, page faults, frequency scaling.
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Statistical significance - Noise mitigation

Noise can only be mitigated:

» Stop all other background processes (other users)

+ Staobilize CPU Frequency (sudo cpupower -g performance)
* Make sure laptops are plugged to avoid powersaving policies

* Pin threads via taskset, OMP_PLACES and OMP_PROC_BIND
+ Consider hyperthreading
+ Use stable compute nodes

Meta-repetitions are essential to mitigate noisy measurements.
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Statistical significance - Example

Same experiment on a stabilized benchmarking server:

Stability of Time Measurements for a Dummy Kernel
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On a laptop: Mean = 0.315 ms, CV = 13.55%
Stabilized node: Mean = 0.582 ms, CV = 1.14%

Timing on a laptop is always subpar
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Statistical significance - Mean, Median, Variance

Single-run measurements are misleading; we need statistics.

- Mean runtime z = + 3" .
n =11
* Median: less sensitive to outliers than the mean
* Variance/standard deviation: Measure of uncertainty
» Relative metrics are useful: Coefficient of variation

(CV = 2 x 100%)

We usually give both the mean and standard deviation when
giving performance results. Plots usually show & + 10 as a
shaded region around the mean to represent uncertainty.

Distribution plots can be useful: stable measurements are often
close to Gaussian, even if systematic noise may lead to skewed
or heavy-tailed distributions.
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Statistical significance - Confidence Intervals

How to decide how many repetitions we should perform ?

» Usually, the costlier the kernels, the less meta-repetitions are

expected
* Short or really short kernels should have more metas to

reduce the influence of noise
Remember that:
o
Jn

More repetitions increase confidence, but returns diminish:
Cl width ox —=
N

Confidence intervals are a bit less common in plots than +10
but can also be used !

Clyos ~ T +1.96 -
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Statistical significance - p-score & Hypothesis testing

In HPC, mean/median and variance often suffice, but hypothesis
testing can become handy in some contexts.

+ Null hypothesis (H): GPU and CPU have the same
performance for small matrixes

+ Differences in measurements are only due to noise
+ Alternative hypothesis: CPU is faster for small matrixes
+ p-value is the probability that H |, explains a phenomenon.

« If p < 0.05, we can safely reject H, (Statistically significant
difference)

Exomple: jGPU = 5.08, UGPU = 020, :ECPU = 4.88, UCPU = 04,
Two-sample t-test with 10 samples p = 0.02.

The measured differences between CPU and GPU execution time
are statistically significant.
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Experimental Methodology - Reproducibility

Reproducibility is a very hot topic (Reproducibility crisis in
science):

* Data and protocols are first-class citizens: as important as
the plots themselves

« Transparency matters: make data, scripts, and parameters
accessible

* Enables others to verify, build on, and trust your results

Beware of your mindset: your results should be credible and
honest before being “good”.

“Our results are unstable, we have yet to understand why, this is
what we tried" is a completely valid answer

21/46



Plotting Tools




Plotting tools - Cheetsheet

Name Use

pandas Storing and saving tabular data
numpy Numerical arrays, manipulating data
matplotlib  Basic 2D plots, full control

seaborn Statistical plots, higher-level API
logging Logging experiment progress/results
OpenCV Image processing, animations/videos
ffmpeg Generating and encoding videos

Lookup the quick reference plotting gallery in the annex!
Both matplotlib and seaborn provide extensive online galleries.

[Live Example of the matplotlib gallery
https://matplotlib.org/stable/gallery/index.html]
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https://matplotlib.org/stable/gallery/index.html

Plotting tools - Matplotlib

Matplotlib is one of the most widely used plotting libraries.
A figure is built hierarchically from nested elements:

- Figure (The canvas)
- (Subfigures)
- Axes (One or more subplots)
- Axis (x/y/z scales, ticks, labels)
- Artists (Lines, markers, text, patches, etc.)

* Data is plotted using axis-level functions like ax.plot,
ax.histogram

» Customization occurs at both the Figure and Axes levels

+ Complex multi plots layout occur ot the Figure level
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Plotting tools - Matplotlib
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Plotting tools - Matplotlib

import matplotlib.pyplot as plt

(o, 1, 2, 3]
[2.8, 5.7, 12.5, 14]

X
y

# Create a new figure, single axis

# Size is 8 inches by 8 inches, and constrained layout

fig, ax = plt.subplots(figsize=(8, 8), layout='"constrained")
# Plot a simple line

ax.plot(x, y, color="red", label="My Algorithm")

# Customize the axes

ax.set_xlabel("Iteration") # Name of the X axis
ax.set_ylabel("Time (s)") # Name of the y axis

# Title of the plot

ax.set_title("Evolution of Time with the number of iteration")

ax.margins(0, O) # Remove white spaces around the figure
ax.legend(loc="upper right") # Draw the legend in the upper right
corner

fig.savefig("my_plot.png", dpi=300) # Higher DPI -> bigger image
plt.close() # End the plot and release resources
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Plotting tools - Matplotlib (Multi axis)

We can easily have multiple plots on the same figure:

nrows = 5, ncols =1
fig, axs = plt.subplots(5, 1, figsize(8 * ncols, 3 * nrows))

ax = axs[0]

ax.plot ()

ax = axs[1]
ax.plot()

fig.tight_layout() # Alternative to constrained layout
fig.savefig('my multiplot.png", dpi=300)

Each axis is its own plot, with its own legend and artists.

Use the reference (https://matplotlib.org/stable/api/index.html)
and gallery (https://matplotlib.org/stable/gallery/index.html)
extensively |
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Plotting tools - Seaborn

Seaborn is an extension of Matplotlib dedicated to statistical

visualization:

B

B

pth_mm

bill_dej

3000 000 000 000
body_mass_g

Figure 9: https://seaborn.pydata.org/examples/index.html

It's useful for histograms, bar charts, kdeplots, scatterplots, and is
overall a very good companion library.
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https://seaborn.pydata.org/examples/index.html

Plotting tools - Seaborn

import matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import numpy as np

df = pd.read_csv(...) # Read the dataframe from somewhere
fig, ax = plt.subplots(figsize=(8, 8), layout='"constrained")

# We must pass the axis to plot on as an argument
sns.kdeplot(data=df, x="Time", label="Algorithm", color="red",
fill=True, ax=ax)

ax.set_title("Distribution of Execution time for the algorithm")
ax.margins(0, 0)

ax.set_xlabel("Time (s)", fontweight="bold")
ax.set_ylabel("Density", fontweight="bold")

ax.set_xticks(np.linspace(df["Time"].min(), df["Time"].max(), 10)
# Format the x axis ticks: °3.2b6s”
ax.xaxis.set_major_formatter (StrMethodFormatter ("{x:.2f}s"))

fig.savefig("my_distribution.png")

https://matplotlib.org/stable/gallery/ticks/tick-formatters.html  28/46
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Profiling - Motivation

+ HPC codes are massive, complex and heterogeneous
* Humans are bad at predicting bottlenecks

+ Don't blindly optimize everything

« Profiling guides optimization

Remember: Always profile first.
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Profiling - Amdahl’s law

1

Speedup = ——
P 1—f+1%

Where f is the fraction of program improved, and S is the speedup
on that fraction.

Example:

» | have optimized 80% of my application, with a speedup of x10

+ In total, my application is now m = 3.57x faster

The 20% are a bottleneck!
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Profiling - Steps

1. Where (Hotspots) ?

+ What functions are we spending time/energy in ?
* What call-tree are we spending time/energy in ?

2. Why ?

» Arithmetic density, memory access patterns
+ Cache misses, branch misspredictions, vectorization efficieny
(Hardware counters)

3. What goal ?

+ Should | optimize for speed ? For energy ? Memory footprint ?
* What about cold storage size/compression ?

* Do | have constraints (i.e. limited memory) ?
» Should | optimize or switch algorithm ?
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Profiling - Time

It's rather easy to benchmark a single function using a
(high-resolution monotonic) clock:

begin = time.now()
my_function()

end = time.now()
elapsed = end - begin

Very simple way to evalute a function cost
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Profiling - Time (Stability)

But we have to account for noise:

for _ in range(NWarmup):
my_function()

times = []

for _ in range(NMeta):
begin = time.perf_counter()
my_function()
times.append(time.perf_counter() - begin)

median = np.median(times)
std = np.std(times)
print (£ )

We must check that our measures are valid |
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Profilers - Introduction

Full application -> Thousands of functions to measure !

* Profilers are tools to automate this

+ Two main types:
+ Sampling: Pause the program and log where the program is
(Costly functions -> More samples !)
+ Instrumentation: Modify the program to automatically add timers

Profilers can also check for thread usage, vectorization, memory
Qccess, etc.
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Perf - Record

Linux Perf is a powerful and versatile profiler:

pert report perf.out

perf record -g -- python3 ./scripts/run_bls.py kepler-8
[ perf record: Woken up 255 times to write data ]
[ perf record: Wrote 85.474 MB perf.data (1220354 samples) ]

Samples: 696K of event 'cpu_core/cycles/Pu’, Event count (approx.): 651792089127

Children Self Command Shared Object
- bls.so

1ibpython

Symbol
[.] bls._omp_fn.0

Py_RunMain
_EvalFrameDefault
mport_ImportModuleLevelObject
object_vacall
11MethodObjArgs
orcall_FASTCALL_KEYWORDS

PyE
builtin

It's a great tool to quickly get a Tree stack without any

dependencies.
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Profiling - Hardware counters

In reality, perf is not realy a profiler !

* The Linux Perf APl can be used to access many hardware
counters
* Perf record is just one usage of perf

Most CPUs/GPUs have hardware counters that monitors different
events:

* Number of cycles

* Number of instructions

* Number of memory access
« RAPL
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Profiling - Perf for Hardware counters

perf stat -e cycles,instructions python3 ./scripts/run_bls.py
kepler-8

{'period': 3.520136229965055, 'duration': 0.11662673569985234, '
phase': 0.43, 'depth': 0.004983530583444806, 'power':
0.028861678651344452}

Performance counter stats for 'python3 ./scripts/run_bls.py

kepler-8':
962,187,248,452 cpu_atom/cycles/
(43.66%)
1,119,319,677,606 cpu_core/cycles/
(56.34%)
3,547,146,665,075 cpu_atom/instructions/ #
3.69 insn per cycle (43.66%)
2,837,633,772,530 cpu_core/instructions/ #
2.54 insn per cycle (56.34%)

12.507192456 seconds time elapsed
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VTune

The Intel VTune profiler is more complex but more self-contained
than perf:

" Hotspots Insights
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VTune - CPU Usage
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VTune - HPC Performance

VTune has multiple collection mode:

Memory Bound : 1.0% of Pipeline Slots

Performance-core (P-core):

Memory Bound " 1.0%  of Pipeline Slots
Efficient-core (E-core):
Memory Bound " : 0.3% of Clockticks

WA IS applied to metrics with untiefined value. There is no data to calculate the metc.

Bandwidth Utilization Histogram

Vectorization : 0.0% & of Packed FP Operations
Instruction Mix:
SP FLOPs ™1 0.0% of uOps
Packed ©: 0.0% from SP FP
Scalar @: 100.0%® from SP FP
DP FLOPs " 16.1% of uOps
Packed ©: 0.0% from DP FP

Scalar 100.0% & from DP FP
X87 FLOPs : 0.0% of uOps
Non-FP 83.9% of uOps

Metrics were colfected from Big Cores aniy.

Top Loops/Functions with FPU Usage by CPU Time
This section provides information for the mast time consuming loops/functions with floating point operations.

Function CPU Time % of FP Ops FP Ops: Packed FP Ops: Scalar Vector Instruction Set Loop Type
[Loop@0x1940 in bls._omp_fn.0] 120.926s 163% 0.0% 100.0% Mk SSE2(128)R
[Loop@0x184f in bls._omp_fn.0] 0.106s 320 0.0% 100.0%
native_write_msr 0.040s 16% 0.0% 100.0%

[Loop@0x1920 in bls._omp._fn.0] 0.029s 105% 0.0% 1000%  SSE(128); SSE2(128)

*N/A is applied to non-summable metrics,
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Other profilers

* MAQAO is a profiler developped by the LIPARAD

+ AMD, NVIDIA and ARM have their own profilers for their
plotforms

+ And many, many others (likwid, gprof, etc.)

Usually, we combine a “quick” profiler like gprof/perf record with a
more indepth one when needed.
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Profiling - Energy

Energy is a growing concern:

* One HPC cluster consume millions of dollars in electricity
yearly

* ChatGPT and other LLM are computationally intensive:
* Nvidia GPUs consumes lots of energy

On the flip side, measuring energy is harder than measuring time.

Many actors still focus on execution time only -> Energy is
perceived as “Second rank”

42/46



Profiling - RAPL

Running Average Power Limit (RAPL) is an x86 hardware counter
that monitors energy consumption:

* Energy is tracked at different level
+ Core, Rom, Package, GPU, etc.

+ It does not account for secondary power consummers (Fans,

Water cooling, etc.)
* RAPL is not event based: The entire machine is measured !

(Background processes, etc.)

It requires sudo permissions to access (compared to a clock)

perf stat -a -j -e power/energy-pkg,power/energy-cores <app>

{"counter-value" : "88.445740", "unit" : "Joules", "event" : "
power/energy-pkg/", "event-runtime" : 10002168423, "pcnt-
running" : 100.00}

{"counter-value" : "10.848633", "unit" : "Joules", "event"
power/energy-cores/", "event-runtime" : 10002166697, "pcnt-
running" : 100.00}

"
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Profiling - Watt-Meter
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Profiling - RAPL accuracy

rapl-pkg - - rapl-ram rapl-total

yoko - -~

RAPL estimates vs. Yokogawa watt-meter nbody 4 threads

100
i7-4770 (Haswell)

nbody 2 threads

nbody 1 thread

copy 100M elements RAM

idle
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Experiment example

Annex/run_experiment.sh

Annex/model_convergence.py
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https://m1-chps.github.io/glhpc/annex/example_experiment/model_convergence/
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