
L4: Experimental Design, Profiling, and
Performance/Energy Optimization

M. Jam, P. de Oliveira Castro
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/46

1. Experimental Design, Profiling, and Performance/Energy
Optimization

2. Experimental Methodology

3. Plotting Tools

4. Profiling

5. Live Demo

2/46

Experimental Design, Profiling,
and Performance/Energy
Optimization

Plot Example - Intro

In the following slides, you will be shown a series of plots; mainly
taken from the PPN course reports of previous students.

For each plot:

• Try to understand what is represented
• Explain what you observe
• Give a definitive conclusion from the data shown

Raise your hands when ready to propose an explanation.

3/46

Plot Example (1)

Figure 1: PPN Example - (No Caption)

4/46

Plot Example (2)

Figure 2: PPN Example - (No Caption)

5/46

Plot Example (3)

Figure 3: PPN Example - (No Caption)

6/46

Plot Example (4)

Figure 4: PPN Example - “Récapitulatif des optimisations faites”
7/46

Plot Example (5)

Figure 5: PPN Example - “Nouveau tracé de la latence cache”

8/46

Plot Example (6)

Figure 6: Prof Example - (KNM): (a) Speedup map of GA-Adaptive (7k
samples) over the Intel MKL hand-tuning for dgetrf (LU), higher is better.
(b) Analysis of the slowdown region (performance regression). (c) Analysis
of the high speedup region. 3, 000 random solutions were evaluated for
each distribution.

9/46

Plot Example (7)

Figure 7: Prof Example - (SPR): Geometric mean Speedup (higher is better)
against the MKL reference configuration on dgetrf (LU), depending on the
sampling algorithm. 46x46 validation grid. 7k/15k/30k denotes the
samples count. GA-Adaptive outperforms all other sampling strategies for
auto-tuning. With 30k samples it achieves a mean speedup of ×1.3 of the
MKL dgetrf kernel.

10/46

Plot Example - What makes a good plot

Ask yourself:

• What do I want to communicate ?
• What data do I need ?
• Is my plot understandable in ~10 seconds ?
• Is my plot self-contained ?
• Is the context, environment, and methodology clear ?

11/46

Plot Example - Summary

HPC is a scientific endeavour; data analysis and plotting are
essential.

• Plots drive decisions
• Plots make results trustworthy
• Plots explain complex behaviors

Datasets are large, multi-disciplinary, and often hard to
reproduce.

12/46

Experimental Methodology

Experimental Methodology - Workflow

Figure 8: Typical experimental workflow

13/46

Statistical significance - Introduction

Computers are noisy, complex systems:

• Thread scheduling is non deterministic -> runtime varies
between runs.

• Dynamic CPU frequency (Turbo/Boost)
• Systems are heterogeneous (CPU/GPU, dual socket, numa
effects, E/P cores)

• Temperature/thermal throttling can alter runtime

How can we make sure our experimental measurements are
reliable and conclusive?

14/46

Statistical significance - Warm-up effects

Systems need time to reach steady-state:

On a laptop: Mean = 0.315 ms, CV = 13.55%
We need “warm-up” iterations to measure stable performance and
skip cold caches, page faults, frequency scaling.

15/46

Statistical significance - Noise mitigation

Noise can only be mitigated:

• Stop all other background processes (other users)
• Stabilize CPU Frequency (sudo cpupower -g performance)

• Make sure laptops are plugged to avoid powersaving policies
• Pin threads via taskset, OMP_PLACES and OMP_PROC_BIND
• Consider hyperthreading
• Use stable compute nodes

Meta-repetitions are essential to mitigate noisy measurements.

16/46

Statistical significance - Example

Same experiment on a stabilized benchmarking server:

On a laptop: Mean = 0.315 ms, CV = 13.55%
Stabilized node: Mean = 0.582 ms, CV = 1.14%
Note
Timing on a laptop is always subpar

17/46

Statistical significance - Mean, Median, Variance

Single-run measurements are misleading; we need statistics.

• Mean runtime ̄𝑥 = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖
• Median: less sensitive to outliers than the mean
• Variance/standard deviation: Measure of uncertainty
• Relative metrics are useful: Coefficient of variation
(𝐶𝑉 = 𝜎

𝑥̄ × 100%)

We usually give both the mean and standard deviation when
giving performance results. Plots usually show ̄𝑥 ± 1𝜎 as a
shaded region around the mean to represent uncertainty.

Note
Distribution plots can be useful: stable measurements are often
close to Gaussian, even if systematic noise may lead to skewed
or heavy-tailed distributions.

18/46

Statistical significance - Confidence Intervals

How to decide how many repetitions we should perform ?

• Usually, the costlier the kernels, the less meta-repetitions are
expected

• Short or really short kernels should have more metas to
reduce the influence of noise

Remember that:

𝐶𝐼0.95 ≈ ̄𝑥 ± 1.96 ⋅ 𝜎√𝑛
More repetitions increase confidence, but returns diminish:
CI width ∝ 1√𝑛

Note
Confidence intervals are a bit less common in plots than ±1𝜎
but can also be used !

19/46

Statistical significance - p-score & Hypothesis testing

In HPC, mean/median and variance often suffice, but hypothesis
testing can become handy in some contexts.

• Null hypothesis (𝐻0): GPU and CPU have the same
performance for small matrixes
• Differences in measurements are only due to noise

• Alternative hypothesis: CPU is faster for small matrixes

• p-value is the probability that 𝐻0 explains a phenomenon.

• If 𝑝 < 0.05, we can safely reject 𝐻0 (Statistically significant
difference)

Example: ̄𝑥𝐺𝑃𝑈 = 5.0s, 𝜎𝐺𝑃𝑈 = 0.20, ̄𝑥𝐶𝑃𝑈 = 4.8s, 𝜎𝐶𝑃𝑈 = 0.4,
Two-sample t-test with 10 samples 𝑝 = 0.02.
The measured differences between CPU and GPU execution time
are statistically significant.

20/46

Experimental Methodology – Reproducibility

Reproducibility is a very hot topic (Reproducibility crisis in
science):

• Data and protocols are first-class citizens: as important as
the plots themselves

• Transparency matters: make data, scripts, and parameters
accessible

• Enables others to verify, build on, and trust your results

Note
Beware of your mindset: your results should be credible and
honest before being “good”.
“Our results are unstable, we have yet to understand why, this is
what we tried” is a completely valid answer

21/46

Plotting Tools

Plotting tools - Cheetsheet

Name Use

pandas Storing and saving tabular data
numpy Numerical arrays, manipulating data
matplotlib Basic 2D plots, full control
seaborn Statistical plots, higher-level API
logging Logging experiment progress/results
OpenCV Image processing, animations/videos
ffmpeg Generating and encoding videos

Lookup the quick reference plotting gallery in the annex!
Both matplotlib and seaborn provide extensive online galleries.

[Live Example of the matplotlib gallery
https://matplotlib.org/stable/gallery/index.html]

22/46

https://matplotlib.org/stable/gallery/index.html

Plotting tools - Matplotlib

Matplotlib is one of the most widely used plotting libraries.
A figure is built hierarchically from nested elements:
- Figure (The canvas)

- (Subfigures)
- Axes (One or more subplots)
- Axis (x/y/z scales, ticks, labels)
- Artists (Lines, markers, text, patches, etc.)

• Data is plotted using axis-level functions like ax.plot,
ax.histogram

• Customization occurs at both the Figure and Axes levels
• Complex multi plots layout occur at the Figure level

23/46

Plotting tools - Matplotlib

24/46

Plotting tools - Matplotlib

import matplotlib.pyplot as plt

x = [0, 1, 2, 3]
y = [2.8, 5.7, 12.5, 14]

Create a new figure, single axis
Size is 8 inches by 8 inches, and constrained layout
fig, ax = plt.subplots(figsize=(8, 8), layout="constrained")

Plot a simple line
ax.plot(x, y, color="red", label="My Algorithm")

Customize the axes
ax.set_xlabel("Iteration") # Name of the X axis
ax.set_ylabel("Time (s)") # Name of the y axis
Title of the plot
ax.set_title("Evolution of Time with the number of iteration")

ax.margins(0, 0) # Remove white spaces around the figure
ax.legend(loc="upper right") # Draw the legend in the upper right

corner

fig.savefig("my_plot.png", dpi=300) # Higher DPI -> bigger image
plt.close() # End the plot and release resources

25/46

Plotting tools - Matplotlib (Multi axis)

We can easily have multiple plots on the same figure:
nrows = 5, ncols = 1
fig, axs = plt.subplots(5, 1, figsize(8 * ncols, 3 * nrows))

ax = axs[0]
ax.plot()
...

ax = axs[1]
ax.plot()
...

fig.tight_layout() # Alternative to constrained layout
fig.savefig("my_multiplot.png", dpi=300)

Each axis is its own plot, with its own legend and artists.
Note
Use the reference (https://matplotlib.org/stable/api/index.html)
and gallery (https://matplotlib.org/stable/gallery/index.html)
extensively !

26/46

https://matplotlib.org/stable/api/index.html
https://matplotlib.org/stable/gallery/index.html

Plotting tools - Seaborn

Seaborn is an extension of Matplotlib dedicated to statistical
visualization:

Figure 9: https://seaborn.pydata.org/examples/index.html

It’s useful for histograms, bar charts, kdeplots, scatterplots, and is
overall a very good companion library.

27/46

https://seaborn.pydata.org/examples/index.html

Plotting tools - Seaborn

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

df = pd.read_csv(...) # Read the dataframe from somewhere

fig, ax = plt.subplots(figsize=(8, 8), layout="constrained")

We must pass the axis to plot on as an argument
sns.kdeplot(data=df, x="Time", label="Algorithm", color="red",

fill=True, ax=ax)

ax.set_title("Distribution of Execution time for the algorithm")
ax.margins(0, 0)
ax.set_xlabel("Time (s)", fontweight="bold")
ax.set_ylabel("Density", fontweight="bold")

ax.set_xticks(np.linspace(df["Time"].min(), df["Time"].max(), 10)
Format the x axis ticks: `3.25s`
ax.xaxis.set_major_formatter(StrMethodFormatter("{x:.2f}s"))

fig.savefig("my_distribution.png")

https://matplotlib.org/stable/gallery/ticks/tick-formatters.html 28/46

https://matplotlib.org/stable/gallery/ticks/tick-formatters.html

Profiling

Profiling - Motivation

• HPC codes are massive, complex and heterogeneous
• Humans are bad at predicting bottlenecks
• Don’t blindly optimize everything
• Profiling guides optimization

Remember: Always profile first.

29/46

Profiling - Amdahl’s law

Speedup = 1
1 − 𝑓 + 𝑓

𝑆

Where f is the fraction of program improved, and S is the speedup
on that fraction.

Example:

• I have optimized 80% of my application, with a speedup of x10
• In total, my application is now 1

0.2+(0.8/10) = 3.57× faster

The 20% are a bottleneck !

30/46

Profiling - Steps

1. Where (Hotspots) ?

• What functions are we spending time/energy in ?
• What call-tree are we spending time/energy in ?

2. Why ?

• Arithmetic density, memory access patterns
• Cache misses, branch misspredictions, vectorization efficieny
(Hardware counters)

3. What goal ?

• Should I optimize for speed ? For energy ? Memory footprint ?
• What about cold storage size/compression ?

• Do I have constraints (i.e. limited memory) ?
• Should I optimize or switch algorithm ?

31/46

Profiling - Time

It’s rather easy to benchmark a single function using a
(high-resolution monotonic) clock:
begin = time.now()
my_function()
end = time.now()
elapsed = end - begin

Very simple way to evalute a function cost

32/46

Profiling - Time (Stability)

But we have to account for noise:
for _ in range(NWarmup):

my_function()

times = []
for _ in range(NMeta):

begin = time.perf_counter()
my_function()
times.append(time.perf_counter() - begin)

median = np.median(times)
std = np.std(times)
print(f"Time: {median} +/- {std}")

We must check that our measures are valid !

33/46

Profilers - Introduction

Full application -> Thousands of functions to measure !

• Profilers are tools to automate this
• Two main types:

• Sampling: Pause the program and log where the program is
(Costly functions -> More samples !)

• Instrumentation: Modify the program to automatically add timers

Profilers can also check for thread usage, vectorization, memory
access, etc.

34/46

Perf - Record

Linux Perf is a powerful and versatile profiler:
perf record -g -- python3 ./scripts/run_bls.py kepler-8
[perf record: Woken up 255 times to write data]
[perf record: Wrote 85.474 MB perf.data (1220354 samples)]

pert report perf.out

It’s a great tool to quickly get a Tree stack without any
dependencies.

35/46

Profiling - Hardware counters

In reality, perf is not realy a profiler !

• The Linux Perf API can be used to access many hardware
counters

• Perf record is just one usage of perf

Most CPUs/GPUs have hardware counters that monitors different
events:

• Number of cycles
• Number of instructions
• Number of memory access
• RAPL

36/46

Profiling - Perf for Hardware counters

perf stat -e cycles,instructions python3 ./scripts/run_bls.py
kepler-8

{'period': 3.520136229965055, 'duration': 0.11662673569985234, '
phase': 0.43, 'depth': 0.004983530583444806, 'power':
0.028861678651344452}

Performance counter stats for 'python3 ./scripts/run_bls.py
kepler-8':

962,187,248,452 cpu_atom/cycles/
(43.66%)

1,119,319,677,606 cpu_core/cycles/
(56.34%)

3,547,146,665,075 cpu_atom/instructions/ #
3.69 insn per cycle (43.66%)

2,837,633,772,530 cpu_core/instructions/ #
2.54 insn per cycle (56.34%)

12.507192456 seconds time elapsed

37/46

VTune

The Intel VTune profiler is more complex but more self-contained
than perf:

38/46

VTune - CPU Usage

39/46

VTune - HPC Performance

VTune has multiple collection mode:

40/46

Other profilers

• MAQAO is a profiler developped by the LIPARAD
• AMD, NVIDIA and ARM have their own profilers for their
platforms

• And many, many others (likwid, gprof, etc.)

Usually, we combine a “quick” profiler like gprof/perf record with a
more indepth one when needed.

41/46

Profiling - Energy

Energy is a growing concern:

• One HPC cluster consume millions of dollars in electricity
yearly

• ChatGPT and other LLM are computationally intensive:
• Nvidia GPUs consumes lots of energy

On the flip side, measuring energy is harder than measuring time.

Many actors still focus on execution time only -> Energy is
perceived as “Second rank”

42/46

Profiling - RAPL

Running Average Power Limit (RAPL) is an x86 hardware counter
that monitors energy consumption:

• Energy is tracked at different level
• Core, Ram, Package, GPU, etc.

• It does not account for secondary power consummers (Fans,
Water cooling, etc.)

• RAPL is not event based: The entire machine is measured !
(Background processes, etc.)

It requires sudo permissions to access (compared to a clock)
perf stat -a -j -e power/energy-pkg,power/energy-cores <app>
{"counter-value" : "88.445740", "unit" : "Joules", "event" : "

power/energy-pkg/", "event-runtime" : 10002168423, "pcnt-
running" : 100.00}

{"counter-value" : "10.848633", "unit" : "Joules", "event" : "
power/energy-cores/", "event-runtime" : 10002166697, "pcnt-
running" : 100.00}

43/46

Profiling - Watt-Meter

Figure 10: Yokogawa

Hardware solutions are also available to monitor energy
consumption. They typically have a slow sampling resolution
(≈ 1𝑠) and are harder to scale to entire clusters.
On the flip side, they give precise power measurements compared
to RAPL.

44/46

Profiling - RAPL accuracy

Figure 11: Calibration of RAPL

In practice, RAPL underestimates power consumption, but trends
are correctly matched.

45/46

Live Demo

Experiment example

Annex/run_experiment.sh

Annex/model_convergence.py

46/46

https://m1-chps.github.io/glhpc/annex/example_experiment/run_experiment/
https://m1-chps.github.io/glhpc/annex/example_experiment/model_convergence/

	Experimental Design, Profiling, and Performance/Energy Optimization
	Experimental Methodology
	Plotting Tools
	Profiling
	Live Demo

