
L3: Building, Testing and Debugging Scientific
Software

P. de Oliveira Castro, M. Jam
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/59

1. Building, Testing and Debugging Scientific Software

2. Makefiles

3. CMake

4. Debugging Tools

5. Software Testing

6. Unity Test Framework

2/59

Building, Testing and Debugging
Scientific Software

Objectives

• Build systems: Advanced Makefiles, introduction to CMake for
managing multi-file and multi-platform projects.

• Debugging: GDB, Valgrind for detecting memory errors and
leaks.

• Software testing:
• Principles: Unit testing, integration testing.
• Test frameworks in C (e.g., Unity).
• Importance of testing for regression prevention and validation.

• Code documentation: Doxygen.

3/59

Makefiles

Dependency Management

• How to determine which files have changed?

main.c lib.clib.h

main.o lib.o

prog

Figure 1: makefile-dependencies

• dependencies: main.o depends on changes in lib.h

4/59

Makefile

• A Makefile uses a declarative language to describe targets
and their dependencies.

• It is executed by the make command, which allows building
different targets.
• make uses timestamps to determine which files have changed.

• make evaluates rules recursively to satisfy dependencies.

5/59

Makefile Rule

prog: main.c lib.c lib.h
clang -o prog main.c lib.c -lm

target: dependencies
\t command to build the target from the dependencies

6/59

Separate Compilation

prog: main.o lib.o
clang -o prog main.o lib.o -lm

main.o: main.c lib.h
clang -c -o main.o main.c

lib.o: lib.c lib.h
clang -c -o lib.o lib.c

If lib.c is modified, which commands will be executed?

7/59

Phony Targets

You can add targets that do not correspond to a produced file.
For example, it is useful to add a clean target to clean the project.
clean:

rm -f *.o prog
.PHONY: clean

.PHONY specifies that the clean rule should always be executed.
Declaring all phony targets ensures they are always called (even if
a file with the same name is created).

8/59

Default Rule

make clean
make prog
make

• If make is called with a rule, that rule is built.
• If make is called without arguments, the first rule is built. It is
customary to include a default all: rule as the first rule.

all: prog

prog: ...

9/59

Variables

CC=clang
CFLAGS=-O2
LDFLAGS=-lm

prog: main.o lib.o
$(CC) -o prog main.o lib.o $(LDFLAGS)

main.o: main.c lib.h
$(CC) $(CFLAGS) -c -o main.o main.c

lib.o: lib.c lib.h
$(CC) $(CFLAGS) -c -o lib.o lib.c

Variables can be overridden when calling make, e.g.,
make CC=gcc

10/59

Special Variables

$@ target name
$^ all dependencies
$< first dependency

prog: main.o lib.o
$(CC) -o $@ $^ $(LDFLAGS)

main.o: main.c lib.h
$(CC) $(CFLAGS) -c -o $@ $<

lib.o: lib.c lib.h
$(CC) $(CFLAGS) -c -o $@ $<

The last two rules are very similar…

11/59

Implicit Rules

Before
main.o: main.c lib.h

$(CC) $(CFLAGS) -c -o $@ $<

lib.o: lib.c lib.h
$(CC) $(CFLAGS) -c -o $@ $<

With Implicit Rule
%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

main.o: lib.h
lib.o: lib.h

12/59

Other Build Systems

• automake / autoconf: automatic generation of complex
makefiles and management of system-specific configurations.

• cmake, scons: successors to Makefile, offering more elegant
syntax and new features.

13/59

CMake

Why CMake?

• Advantages of Makefiles:
• Simplicity and transparency.
• No additional tools required.
• Direct control over the build process.

• Advantages of CMake:
• Cross-platform support (Linux, Windows, macOS).
• Generates build files for multiple build systems (Make, Ninja, etc.).
• Modular and target-based design.
• Built-in support for testing, installation, and packaging.

14/59

General Design of CMake

• CMake as a Meta-Build System:
• Generates build files for different generators (e.g., Make, Ninja).
• Abstracts platform-specific details.

• Workflow:
1. Write CMakeLists.txt to define the project.
2. Configure the project:

cmake -B build

3. Build the project:

cmake --build build
or when using Make as backend
make -C build

Out-of-source builds are recommended to keep source
directories clean.

15/59

Basic Structure of CMakeLists.txt

cmake_minimum_required(VERSION 3.15)
project(MyProject LANGUAGES C)

set(CMAKE_C_STANDARD 11)

• cmake_minimum_required: Specifies the minimum version of
CMake required.

• project: Defines the project name and the programming
language(s) used.

• set: Sets variables, e.g., C standard version.

16/59

Adding an Executable

add_executable(my_executable src/main.c)

• Creates an executable named my_executable.

17/59

Adding a Shared Library

add_library(my_library SHARED src/library.c)

• Creates a shared library named libmy_library.so (on Linux).

18/59

Linking Libraries to Executables

add_library(my_library SHARED src/library.c)
add_executable(my_executable src/main.c)
target_link_libraries(my_executable PRIVATE my_library)

• add_library: Creates a shared library.
• add_executable: Creates an executable.
• target_link_libraries: Links the library to the executable.

PRIVATE means that my_executable uses my_library, but my_library
does not need to be linked when other targets link to
my_executable.

19/59

Library dependency transitivity

add_library(libA SHARED src/libA.c)
add_library(libB SHARED src/libB.c)
target_link_libraries(libB PUBLIC libA)
add_executable(my_executable src/main.c)
target_link_libraries(my_executable PRIVATE libB)

• my_executable is linked to libB and also to libA because libB
links to libA with PUBLIC.

• If libB linked to libA with PRIVATE, my_executable would not be
linked to libA.

• If libB linked to libA with INTERFACE, my_executable would be
linked to libA but not libB.

• See this reference for more details.

20/59

https://cmake.org/cmake/help/latest/command/target_link_libraries.html

Global Include Directories

include_directories(include)

• Adds the include directory globally for all targets.
• Limitation: Can lead to conflicts in larger projects.

21/59

Target-Specific Include Directories

target_include_directories(my_library
PUBLIC include

)

• PUBLIC: Include directory is needed when building and using
the library.

• PRIVATE: Include directory is needed only when building the
library.

• INTERFACE: Include directory is needed only when using the
library.

22/59

Porting our minimal Makefile example to CMake

cmake_minimum_required(VERSION 3.15)
project(MyProject LANGUAGES C)

Add the executable target
add_executable(prog main.c lib.c)

Specify include directories for the target
target_include_directories(prog

PRIVATE ${CMAKE_CURRENT_SOURCE_DIR})

Add compile options
target_compile_options(prog PRIVATE ${CFLAGS})

Link libraries if needed
target_link_libraries(prog PRIVATE m)

23/59

Debug vs Release Builds

• Debug Build:
• Includes debug symbols for debugging.
• Example flags: -g, -O0.

• Release Build:
• Optimized for performance.
• Example flags: -O3, -DNDEBUG.

24/59

Setting Build Types in CMake

if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE RelWithDebInfo CACHE STRING "Build type"

FORCE)
endif()

• Build types: Debug, Release, RelWithDebInfo, MinSizeRel.

• CACHE: Makes the variable persistent across CMake runs. In
out-of-source builds CMakeLists.txt is not re-evaluated on
subsequent runs.

• FORCE: Overrides any previous value.

• STRING: “Build type” provides a description in CMake GUI.

25/59

Adding Compiler Flags

target_compile_options(my_library PRIVATE
$<$<CONFIG:Debug>:-g -Wall>
$<$<CONFIG:Release>:-O3 -DNDEBUG>

)

• Generator Expressions: $<CONFIG:Debug> applies flags only for
Debug builds.

26/59

Installing Targets

install(TARGETS my_library
LIBRARY DESTINATION lib
PUBLIC_HEADER DESTINATION include

)

• Installs the shared library to the lib directory.
• Installs public headers to the include directory.

27/59

Using GNUInstallDirs

include(GNUInstallDirs)

install(TARGETS my_library
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}

)

• Defines standard GNU library and include directories paths.

28/59

Generating and Building the Project

1. Configure the Project:
cmake -B build

• Generates build files in the build directory.

2. Build the Project:
cmake --build build
or when using Make as backend
make -C build

3. Run the Program:
./build/my_executable

29/59

Best Practices for CMake

• Use Target-Based Commands:
• Prefer target_include_directories over include_directories.
• Prefer target_link_libraries over global linking.

• Organize CMakeLists.txt:
• Group related targets together.
• Use comments to explain sections.

• Avoid Global Commands:
• Avoid include_directories and link_libraries globally.

• Use Modern CMake Features:
• Generator expressions for conditional configurations.
• FetchContent for managing external dependencies.

30/59

Debugging Tools

Buggy program example

/* Linked list of n = 5 nodes
.---------. .---------. .--------------.
| val = 4 | | val = 3 | | val = 0 |

head -> | next --|--> | next --|--> ... -> | next = NULL |
'---------' '---------' '--------------'

*/

#include <stdlib.h>
#include <assert.h>

struct Node
{

int val;
struct Node *next;

};

int main()
{

int n = 5;

struct Node *head = init_list(n);
// ... do something with the list ...
delete(head);

return 0;
} 31/59

Linked List Initialization and Deletion

struct Node *init_list(int n)
{

struct Node *head = NULL;
for (int i = 0; i < n; ++i)
{
struct Node *p = malloc(sizeof *p);
assert(p != NULL);
p->val = i;
p->next = head;
head = p;

}
return head;

}

void delete(struct Node *head)
{

while (head)
{
struct Node *next = head->next;
free(head);
head = head->next;

}
}

32/59

Running the program…

$ gcc -g -O0 -o buggy buggy.c
$./buggy
Segmentation fault (core dumped)

33/59

GDB: GNU Debugger

• Inspect the state of a program at the moment it crashes.
• Step through the code line by line.
• Inspect variables and memory.
• Set breakpoints to pause execution at specific lines.

(Live demonstration)
$ gdb ./buggy
Program received signal SIGSEGV, Segmentation fault.
0x000055555555522b in delete (head=0xa45d97b66d0683e8) at buggy.c

:28
28 struct Node *next = head->next;
(gdb) x head
0xa45d97b66d0683e8: Cannot access memory at address 0

xa45d97b66d0683e8

34/59

Valgrind: memory debugging and leak detection

• Detects memory leaks, invalid memory access, and
uninitialized memory usage.

• Runs the code in a virtual sandbox that monitors every
memory operation.

(Live demonstration)
$ valgrind --leak-check=full ./buggy
==537945== Invalid read of size 8
==537945== at 0x109243: delete (buggy.c:30)
==537945== by 0x109282: main (buggy.c:40)
==537945== Address 0x4a94188 is 8 bytes inside a block of size

16 free'd
==537945== at 0x484988F: free (in /usr/libexec/valgrind/

vgpreload_memcheck-amd64-linux.so)
==537945== by 0x10923E: delete (buggy.c:29)
==537945== by 0x109282: main (buggy.c:40)
==537945== Block was alloc'd at
==537945== at 0x4846828: malloc (in /usr/libexec/valgrind/

vgpreload_memcheck-amd64-linux.so)
==537945== by 0x1091B2: init_list (buggy.c:15)
==537945== by 0x109272: main (buggy.c:38)

35/59

Other tools: ASAN, UBSAN

• AddressSanitizer (ASAN): Detects memory errors such as
buffer overflows and use-after-free.

• UndefinedBehaviorSanitizer (UBSAN): Detects undefined
behavior in C/C++ programs.

• Works on threaded programs and has lower overhead than
Valgrind.

(live demonstration)
$ gcc -fsanitize=address -g -O0 -o buggy_asan buggy.c
$./buggy_asan
===
==538335==ERROR: AddressSanitizer: heap-use-after-free on address

0x502000000098 at pc 0x5bec7c7343e9 bp 0x7ffdf3015150 sp 0
x7ffdf3015140

READ of size 8 at 0x502000000098 thread T0
#0 0x5bec7c7343e8 in delete /home/poliveira/test-gdb/buggy.c
:30
#1 0x5bec7c73442c in main /home/poliveira/test-gdb/buggy.c:40

36/59

Software Testing

Importance of Software Testing

• 1996: Ariane-5 self-destructed due to an unhandled
floating-point exception, resulting in a $500M loss.

• 1998: Mars Climate Orbiter lost due to navigation data
expressed in imperial units, resulting in a $327.6M loss.

• 1988-1994: FAA Advanced Automation System project
abandoned due to management issues and overly ambitious
specifications, resulting in a $2.6B loss.

• 1985-1987: Therac-25 medical accelerator malfunctioned due
to a thread concurrency issue, causing five deaths and
numerous injuries.

37/59

Technical Debt

Figure 2: Software Costs (Applied Soft. Measurement, Capers Jones)

38/59

Software Costs

Figure 3: Software Costs (Nancy Leveson)

39/59

Verification and Validation (V&V)

• Validation: Does the software meet the client’s needs?
• “Are we building the right product?”

• Verification: Does the software work correctly?
• “Are we building the product right?”

40/59

Approaches to Verification

• Formal methods
• Modeling and simulations
• Code reviews
• Testing

41/59

Testing Process

Figure 4: Testing Process (S. Bardin)

42/59

V Cycle Model

NeedsAnalysis
andFeasibility

Specifcations

ArchitecturalDesign

DetailedDesign

Coding

UnitTesting

IntegrationTesting

ValidationTesting

Acceptance

Figure 5: V-Model: Validation followed by Verification

43/59

Different Types of Tests

• Unit Tests:
• Test individual functions in isolation.
• Test-driven development (TDD): Focus on writing maintainable,
simple, and decoupled code.

• Integration Tests:
• Test the correct behavior when combining modules.
• Validate only functional correctness.

• Validation Tests:
• Test compliance with specifications.
• Test other characteristics: performance, security, etc.

• Acceptance Tests:
• Validate requirements with the client.

• Regression Tests:
• Ensure that fixed bugs do not reappear.

44/59

Black-Box and White-Box Testing

Black-Box Testing (Functional)
• Tests are generated from specifications.
• Uses assumptions different from the programmer’s.
• Tests are independent of implementation.
• Difficult to find programming defects.

White-Box Testing (Structural)
• Tests are generated from source code.
• Maximizes coverage by testing all code branches.
• Difficult to find omission or specification errors.

Both approaches are complementary.

45/59

What to Test?

• Running the program on all possible inputs is too costly.
• Choose a subset of inputs:

• Partition inputs into equivalence classes to maximize coverage.
• Test all code branches.
• Test edge cases.
• Test invalid cases.
• Test combinations (experimental design).

46/59

Example of Partitioning (1/3)

Specification
/* compare returns:
* 0 if a is equal to b
* 1 if a is strictly greater than b
* -1 if a is strictly less than b
*/

int compare (int a, int b);

What inputs should be tested?

47/59

Equivalence Classes (2/3)

Variable Possible Values

a {positive, negative, zero}
b {positive, negative, zero}
result {0, 1, -1}

Example Test Cases

a b result

10 10 0
20 5 1
3 7 -1
-30 -30 0
-5 -10 1
… … …

It is possible to select a subset of classes! 48/59

Boundary Tests (3/3)

a b result

-2147483648 -1 -1

49/59

Discussion

• Automatic test generation.
• Test coverage calculation.
• Mutation testing.
• Fuzzing.
• Importance of using automated testing tools.
• Importance of using continuous integration tools.

50/59

Unity Test Framework

Introduction to Unity

Figure 6: Unity Logo

Unity Test Framework

• Lightweight and simple unit testing framework for C.
• Designed for embedded systems but can be used in any C
project.

• Provides a set of macros and functions to define and run
tests.

51/59

http://www.throwtheswitch.org/unity

Setting Up Unity

• Separate Unity tests into a separate directory, e.g., tests/.

• Include the Unity header in your test files:
#include "unity.h"

• Requires linking against the Unity library

• We will link against a static library libunity.a, since Unity uses
CMake, we will use FetchContent to add it to our projects.

52/59

Writing Tests

• test_functions use TEST macros provided by Unity to assert
conditions.
void test_function_name(void) {

...
TEST_ASSERT_EQUAL_INT(expected, actual);
TEST_ASSERT_NOT_NULL(pointer);
TEST_ASSERT_TRUE(condition);
...

}

• Reference for all assertions: Unity Assertions

53/59

https://github.com/ThrowTheSwitch/Unity/blob/master/docs/UnityAssertionsReference.md

Example: testing our linked list

#include "unity.h"
#include "buggy.h"
void test_delete_single_node(void) {

struct Node *head = init_list(1);
TEST_ASSERT_NOT_NULL(head); // head should not be NULL
TEST_ASSERT_EQUAL_INT(0, head->val); // head should be 0
delete(head); // should not crash
TEST_ASSERT_NULL(head); // head should be NULL after deletion

}
void test_delete_multiple_nodes(void) {

struct Node *head = init_list(5);
TEST_ASSERT_EQUAL_INT(4, head->val); // head should be 4
TEST_ASSERT_EQUAL_INT(3, head->next->val);
delete(head); // should not crash
TEST_ASSERT_NULL(head); // head should be NULL after deletion

}

54/59

Running Tests

• Create a test runner function to execute all tests:
int main(void) ## Boundary Tests{

UNITY_BEGIN();
RUN_TEST(test_function_name);
...
return UNITY_END();

}

55/59

SetUp and TearDown

• SetUp and TearDown functions can be defined to run before
and after each test.
void setUp(void) {

// Code to run before each test
}

void tearDown(void) {
// Code to run after each test

}

56/59

Code Coverage with unit tests

• Use gcov or llvm-cov to measure code coverage of your tests.

• Compile your code with coverage flags:
gcc --coverage -g -O0 -o test_runner test_runner.c my_code.c -

lunity

• gcov instruments the basic blocks of code to record what is
executed during tests.

• gcovr generate HTML reports showing which parts of the
code were covered by tests.

57/59

Documentation with Doxygen

• Doxygen is a documentation generator for C, C++, and other
languages.

• It extracts comments from the source code and generates
documentation in various formats (HTML, LaTex, etc.).

• Use special comment blocks to document functions,
parameters, return values, and more.

• Example of a documented function:
/**
* @brief Initializes a linked list with n nodes.
* @param n Number of nodes to create.
* @return Pointer to the head of the linked list
* @return NULL if memory allocation fails.
*/

struct Node *init_list(int n);

• Generate documentation using the doxygen command with a
configuration file (Doxyfile).

58/59

Credits and Bibliography

• Course “Automated Software Testing,” Sébastien Bardin.
• CMake Tutorial
• CMake Best Practices
• Unity Test Framework
• Valgrind
• GDB
• ASAN/UBSAN
• Doxygen

59/59

https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://cliutils.gitlab.io/modern-cmake/
http://www.throwtheswitch.org/unity
http://valgrind.org/
https://www.gnu.org/software/gdb/
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.doxygen.nl/index.html

	Building, Testing and Debugging Scientific Software
	Makefiles
	CMake
	Debugging Tools
	Software Testing
	Unity Test Framework

