
L2: C for High Performance

M. Jam, P. de Oliveira Castro
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/52

1. C for High Performance

2. Managing Memory

3. Compilation & Assembly

4. Parallelism Basics

2/52

C for High Performance

Why C, C++, Python ?

Programming occurs at several abstraction levels from the
hardware

Figure 1: Hardware to Software layers
(https://www.startertutorials.com/blog/basic-software-concepts.html)

3/52

Why C, C++, Python ?

• Layers close to metal are harder to program…
• But they offer maximum control and performance

• High-level abstraction maximize productivity…
• But have significant overhead, less control over performance

In practice; we often combine multiple languages

• C for performance critical sections, python for higher level
APIs

4/52

Why C, C++, Python ?

Figure 2: Hardware to Software layers (Shershakov, Sergey. (2018).
Enhancing Efficiency of Process Mining Algorithms with a Tailored Library:
Design Principles and Performance Assessment Technical Report.
10.13140/RG.2.2.18320.46084.)

5/52

C Programming - Operations and Typing

C is a strongly typed imperative language:
int main() {

int a = 5;
int b = 10;

int c = a + b;
float d = c / a;
float e = (float)c / a;

int f = a * a * a * a;

return 0;
}

main is the program entry point.

6/52

C Programming - Functions

#include <stdio.h> // For printf(...)

int sum_and_square(int a, int n) {
int tmp = a + n;
return tmp * tmp;

}

int main() {
int a = 5;
int b = 4;
int c = sum_and_square(a, b);
int d = sum_and_square(3, 9);

// Print the result to the console
printf("(5+4)**2: %d\n", c);
printf("(3+9)**2: %d\n", d);
return 0;

}

7/52

C Programming - Loops

Implementation C de ∑100
𝑖=1 𝑖

#include <stdio.h> // For printf(...)

int sum_range(const int start, const int end) {
int sum = 0;
// Consider start = 0; end = 100
// For i starting at 0; while i <= 100; increment i by one
for (int i = start; i <= end; i = i + 1) {
sum += i;

}
return sum;

}

int main() {
printf("Result: %d\n", sum_range(1, 100));
return 0;

}

const qualified variable cannot be modified. This may enable
optimizations during compilation.

8/52

C Programming - Conditions

Numbers of multiple of 3 inside [0, 99] (i.e. 𝑖 mod 3 = 0)
void count_multiples_of_three() {

unsigned int count = 0;
// For i starting at 0; while i < 100; increment i by one
for (unsigned int i = 0; i < 100; i++) {
// if i % 3 (Remainder of the integer division) is equal to 0
if (i % 3 == 0) {
count++;

}
}
printf("Result: %d\n", count);

}

Note
Here we could also do for (unsigned int i = 0; i < 100; i += 3)

9/52

C Programming - Basic Pointers

int a = 0;
int b = 5;

int* c = &a;
*c = *c + b;
printf("a: %d; b: %d; c: %d\n", a, b , *c);

c contains the address of a; so *c = *c + b write in a the sum of a
and b.

Adress Value Variable

0x004 0 a
0x008 5 b
0x00c 0x004 c
… … …

10/52

C Programming - Arrays

int main() {
char morpion[9] = {'X', 'O', '\0',

'O', 'X', '\0',
'O', '\0', '\0'};

morpion[8] = 'X'; // The player clicked on the bottom-right
cell !

}

Figure 3: Morpion layout in memory 11/52

C Programming - Structures

Structures are user-defined composite types:
typedef struct {

char* first_name;
char* last_name;
int age;
float mean_grade;
char gender;

} Student;

Student e1 = {"Dupont", "Pierre", 22, 13, 'm'};
Student e2 = {"Major", "Major", 22, 13.5, 'a'};
Student e3 = {"Martin", "Evelynne", 24, 14, 'f'};

if (e1.mean_grade > 10) {
printf("(%s %s) is a pretty good student !\n",

e1.first_name, e1.last_name);
}

C has no concept of class, object, or method !

12/52

C programming - Structures 2

void display_student(Student* s) {
// s->age is equivalent to (*s).age
printf("%s %s (%i): %f\n", s->first_name,

s->last_name, s->age,
s->mean_grade);

}

// We can have arrays of any types !
Student students[3] = {{"Dupont", "Pierre", 22, 13, 'm'}, ...};
for (int i = 0; i < 3; i++)

display_student(&students[i]);

Figure 4: Array of Structure (AoS) layout 13/52

C Programming - Trading Abstraction for performance

In C, we must manually take care of very low level concepts
• We care about data layout, memory addresses, pointers, etc.
• The language doesn’t provide linked lists, dynamic arrays,
dictionaries, etc.

• No basic algorithms like sorting

On the flip side, we can
• Manually lay out data to maximize efficiency
• Remove any abstractions and overhead to maximize
performance

• Generate code that runs as close to the metal as possible
• Optimize our program for the hardware

14/52

C Programming - Trading Abstraction for performance (Example)

Consider the following python and C code:
sum = 0
for i in range(ub):

sum += i
print(sum)

unsigned long long sum = 0;
for (unsigned int i = 0; i < ub; i++){

sum += i;
}
printf("Sum of first %llu integers is: %llu\n", ub, sum);

Where ub is a very large number (100 Millions in this example).
Which one is faster, and by how much ?

15/52

C Programming - Trading Abstraction for performance (Example)

Results:

• C version: 0.024s
• Python version: 5.650s

That’s a speedup of ×235.
We will see later in this course how this is possible.

Numpy and other libraries
Note that we could use numpy or the sum python function: but
those are actually implemented in C !

16/52

Managing Memory

Managing Memory - Concept

In High-level languages
• We operate on abstracted data structures (lists, dictionaries,
etc.)

• Memory is managed automatically (allocation, resizing,
deallocation)

• We don’t care about memory alignment, stack vs. heap, page
size, Numa effects, etc.

In C
• We perform directly with primitive data and raw memory
• We are responsible for allocation, layout, and cleanup
• We can only request chunks of raw memory, and fill it however
we choose

• This is critical for performance
This low level control is critical for performance; hence we must
understand how memory works under the hood !

17/52

Managing Memory - Memory Types

We can distinguish two types of memory

• Memory automatically allocated by the compiler on the stack.
• Stores variables, functions arguments, etc.
• Fast but limited in size

• Memory that is (manually) dynamically allocated on the heap
• Must be allocated and freed by the developer !

The kernel (Linux / Windows) allocates memory pages and
operates at a coarse grain level.
The standard library (libc) manipulates pages on a finer scale
and provides memory to the user.

18/52

Managing Memory - Allocation

#include <time.h> // for time
#include <stdlib.h> // For malloc, srand, rand

int do_the_thing(int n) {
// We allocate n numbers
float* numbers = malloc(sizeof(float) * n);

// We seed the random number generator
srand(time(NULL));

// We generate nsamples random numbers
for (int i = 0; i < n; i++) {
numbers[i] = (float) rand() / RAND_MAX; // Generate a number
in [0, 1]

}
... // Do something complicated here
free(numbers); // Release memory back to the kernel
return 0;

}

19/52

Managing Memory - Allocation

Figure 5: Results of memory allocation

malloc returns a pointer to the beginning of the allocated
memory range 20/52

Managing Memory - Deallocation

Memory is not infinite !

In Python (and Java, C#, etc.); memory is managed by the garbage
collector (GC):

• The runtime tracks all memory allocations; and all reference(s)
• When a memory block is not referenced by the program; the
GC will release the memory back to the kernel.

In C/C++, the user must deallocate memory using free(ptr).

Memory leak
If memory is not freed (memory leak) the computer can run out:
• The kernel can kill the program
• The OS can crash
• Other applications requesting memory can crash or fail

21/52

Virtual And Physical Memory - Problem

• How can the kernel guarantee that memory is always
contiguous?

• Can I acess memory from another program and steal their
data?

• How can multiple applications share the same memory?
• Some variables have hard-coded addresses!

• How to handle (Internal/External) fragmentation (Empty slot)?

22/52

Virtual And Physical Memory - Concept

We separate Physical Addresses (locations in memory) from
Virtual Addresses (Logic locations) seen by each program !

• Physical memory is divided into small fixed-size blocks called
pages (typically ~4KB).

• The CPU includes aMemory Management Unit (MMU) that
translates virtual addresses into physical addresses.

• Each program is given its own isolated virtual address space.
• The kernel maintains a page table for each program that tells
the MMU how to translate addresses.

23/52

The Illusion of contiguity

Each process believes it has acces to a large, contiguous block of
memory; while it can be physically fragmented or shared.

24/52

Virtual And Physical Memory - Diagram

Figure 6: Virtual And Physical Memory

*Note that this is a simplified representation.
25/52

Memory Hierarchy

Which memory are we talking about ?

Figure 7: Memory Hierarchy (https://www.geeksforgeeks.org/memory-
hierarchy-design-and-its-characteristics/)

Note that GPU(s) also have their own separate memory !

26/52

Memory Hierarchy

• CPU computations are extremely fast, and memory access
can be a bottleneck
• Registers have the lowest latency
• CPU caches (L1, L2, L3) act as fast buffers for memory

• DRAM (main memory) is much slower, but cheaper and larger
• Accessing DRAM causes significant delays compared to cache

To achieve high performance, we must maximize data reuse in
registers or caches, and minimize DRAM access.

27/52

CPU Caches

Most CPU have 3 levels of cache

• L1d - First Level Cache (Very fast)
• L2 - Second Level Cache (Fast)
• L3 (Last Level Cache - LLC) (Larger but slower than L1/L2)

Some cache level are per-core (L1, often L2) whereas others are
shared between multiple cores (L3).

Instruction Cache
The assembly instructions are stored in a separate (L1i)
instruction cache

28/52

CPU Caches

Figure 8: CPU Latency and Cache

We speak of Heterogeneous Memory Hierarchy: the same
memory accesses can have different latency depending on where
the data resides !

[Live example: LSTOPO] 29/52

CPU Caches - In practice

for (int i = 0; i < n; i++) {
T[i] = A[i] * B[i];

}

1. The cache controller looks-up the data inside the CPU cache
(L1 -> L2 -> L3)

2. If available, data is sent to register for the ALU
3. Else, a memory request is emitted

• This introduces latency and a bubble in the CPU pipeline

4. When the memory request is resolved; execution resumes
5. The results of 𝑎 ∗ 𝑏 is written to cache, and eventually back to
main memory later on.

30/52

CPU Caches - In practice

In practice:

• The CPU fetches entire cache line (Often 64 Bytes) at once (If
float: 64𝐵/4𝐵 = 16 values at once)

• The CPU can prefetch data: it learns data access patterns
and anticipates future memory access.

• The CPU can execute out-of-order; independent instructions
are executed while the memory request is in flight.

31/52

Caches CPU - Strided Access

Consider two NBody 3D implementations:

Array Of Structure (AoS)
// We allocate N tuples of (x, y, z) positions
float* positions = malloc(sizeof(float) * N * 3);

Structure Of Array (SoA)
// We allocate separate arrays for each components
float* x = malloc(sizeof(float) * N);
float* y = malloc(sizeof(float) * N);
float* z = malloc(sizeof(float) * N);

32/52

Caches CPU - Strided Access

We want to record the number of particles with 𝑥 ≤ 0.5
Array Of Structure (AoS)
for (int i = 0; i < N; i += 3)

if (positions[i] < 0.5)
count++;

Structure Of Array (SoA)
for (int i = 0; i < N; i++)

if (x[i] < 0.5)
count++;

Which one is faster; and why ?

Which access pattern makes better use of cache lines ?

33/52

Caches CPU - Strided Access

Perf results summed across 100 runs:

Time # Instr
L1
Loads

L1
Miss

LLC
Loads

LLC
Miss

AoS ~1.93s ~14
Billion

~3.5
Billion

~1
Million

~400k ~382k

SoA ~1.75s ~14
Billion

~3.5
Billion

~300k ~24k ~15k

Cache references (LLC) # Cache miss

AoS ~158 Million ~151 Million
SoA ~52 Million ~35 Million

With AoS more load fail in the L1, leading to LLC accesses.

Most LLC loads still results in misses, leading to DRAM access.
34/52

Compilation & Assembly

Compilation & Assembly - Introduction

C is a compiled language: we must translate the source code to
assembly for the CPU

gcc ./main.c -o main (<flags>)

• Python is interpreted
• More flexible but significantly slower

• C# and Java are compiled to intermediary bytecode and then
executed via a virtual machine (or JIT-ed)
• Balances performance and productivity

• C/C++/Rust are compiled to assembly code
• Poor portability, but no intermediary.

35/52

Compilation & Assembly - Simple Loop

int sum = 0;
for (int i = 0; i < 100000; i++){

sum += i;
}

main:
.LFB6:

pushq %rbp // We record the stack pointer
movq %rsp, %rbp
movl $0, -4(%rbp) // Initialize sum
movl $0, -8(%rbp) // Initialize i
jmp .L2

.L3:
movl -8(%rbp), %eax // Load sum to a register
addl %eax, -4(%rbp) // Add i and sum (from memory)
addl $1, -8(%rbp) // Add 1 to i (from memory)

.L2:
cmpl $99999, -8(%rbp) // Check if i < 100 000
jle .L3 // Jump Less Equal
movl $0, %eax // Set the return value of main
popq %rbp
ret // Return from main

gcc ./main.c -o main -OO 36/52

Compilation & Assembly

Assembly is as close to the metal we usually get, and is
architecture dependant:

• Intel and AMD use the x86 Instruction Set
• x86 has multiple extensions (FMA, sse, avx, avx512, etc.)
• To maximize performance, we should compile our
applications on each platform
• Our binaries are not portable
• But we can use dedicated instructions

• Other instructions set exists (ARM, Risc V, etc.)

37/52

Compilation & Assembly - Optimization passes

The compiler is not just a translator:

• The compiler can generate optimized instructions from our
program

• Constant values can be propagated, unused values/code
removed

• Operations can be reordered, inlined, vectorized using SIMD,
etc.

• Many, many more optimizations

Those optimizations are enable through flags such as -O1, -O2, -O3
which are predefined sets of optimization passes.

The flag -march=native allows the compiler to target the current
machine for compilation and use all the available ASM extensions.

38/52

Compilation & Assembly - Compiler Pipeline

Figure 9: C Compiler Workflow

There are several compilers with varying performance and
features:

• GCC and Clang-LLVM (The classics)
• MSVC (Microsoft), mingw-LLVM, arm-clang (For ARM) and
many, many others. 39/52

Makefile Basics - Introduction

Make is a scripting tool to automate complex compilation
workflows. It works by defining rules insideMakefiles.
CC := gcc
CFLAGS := -g

main: main.c my_library.c my_library.h
$(CC) -o $@ $^ $(CFLAGS)

• main is the target (What we want to build)
• main.c my_library.c my_library.h are the dependencies: rule
reruns if any change

• $(CC) -o $@ $< $(CFLAGS) is the recipe
• $@ expands to the target name
• $^ expands to all dependency

40/52

Makefile Basics - Phony rules

Makefiles expects that a rule main produces a file called main.
However, not all rules produce files:
.PHONY: all clean

all: main mylibrary

...

clean:
rm -rf *.o
rm -rf ./main

Here, make all will be an alias to build everything, while make clean
is a custom rule to clean all build artifacts. Makefile has many,
many other functionalities, outside the scope of this course.

41/52

Makefile Basics - Usage

The typical projects looks something like:
Project/

src/
main.c
my_library.c

include/
my_library.h

Makefile # We define the Make rules here

make will look for a file in the cwd named Makefile or makefile. You
can directly call make all, make clean, etc.

42/52

Parallelism Basics

Parallelism Basics - Introduction

Compiler optimization is only one side of high peformance
computing.

If you remember; we saw in LSTOPO that our CPU has many cores:

• Every core can perform computations independently of the
other

• Multiple process (Google, vscode, firefox, excel) can run
simultaneously on different cores.

• The kernel manages execution through thread scheduling
and time-slicing

Main Thread
Every process has at least one “thread of execution”, which is an
ordered sequence of instructions executed by the CPU.

43/52

Parallelism Basics - Introduction

What if we could split our programs into multiple threads ?

• If we have 1 thread only one computation happens at a time
• If we have 2 threads, we can potentially double throughput !

In practice, there is some overhead, we must handle
dependencies between instructions, etc.

44/52

Parallelism Basics - Types of parallelism

We consider three main types of parallelism

• Single Instruction Multiple Data (SIMD): also called
Vectorization
• single instruction operates simultaneously on multiple data
elements.

• Shared Memory: Multiple threads inside the same memory
space
• Threads share a memory space, enabling fast communication
and synchronization.

• Distributed Memory: Multiple processes
• Communications are slower, but this model enables scaling
across multiple machines.

For this course, we will only focus on SIMD and Shared Memory
parallelism.

45/52

Parallelism Basics - Shared Memory

Consider the following loop:
int sum = 0;
for (int i = 0; i < 100; i++)

sum += i;

We can slice the iteration space in multiple chunks:

Figure 10: Iteration slicing with 4 threads
46/52

Parallelism Basics - Shared Memory

We split the program into multiple instruction sequences running
in parallel.

• Every thread operates a sum on a subset of the data
• We synchronize every thread and combine the partial sums
via a global reduction.

OpenMP is an HPC tool designed for scenarios like this !

It’s a simple to use library/compiler pass to parallelize trivial
loops.

47/52

Parallelism Basics- OpenMP

int sum = 0;

#pragma omp parallel for reduction(sum: +)
for (int i = 0; i < 100; i++)

sum += i;

gcc ./main.c -fopenmp -O3 -march=native

This directive automatically distributes the loop iterations across
all available CPU cores, performing a thread-safe reduction on
sum.

48/52

Parallelism Basics - OpenMP details

OpenMP defines a set of clause which are operations followed by a
set of modifiers.

• #pragma omp: is the start of all OpenMP clauses
• parallel: enable the creations of multiple threads
• for: toggle the automatic slicing of following loop
• reduction(sum: +): toggles a reductions clause for sum using
the + operation.

This code will be enough for most cases; but OpenMP allows for
significantly more complex operations.

49/52

Parallelism Basics - Advanced OpenMP Example

float global_min = FLT_MAX;
int global_min_index = -1;
#pragma omp parallel
{

float min_value = FLT_MAX;
int min_index = -1;

#pragma omp for nowait schedule(dynamic)
for (int i = 0; i < N; i++) {
if (T[i] < min_value) {
min_value = T[i];
min_index = i;

}
}

#pragma omp critical
{
if (min_value < global_min) {
global_min = min_value;
global_min_index = min_index;

}
}

}

50/52

Naive NBody 3D Strong Scaling - Setup

We increase the number of threads while keeping the work size
constant.

OMP_PLACES={0,2,4,6,8,10,12,14} OMP_PROC_BIND=True
OMP_NUM_THREADS=8 ./nbody 10000
sudo cpupower frequency-set -g performance

5 Meta repetitions per run, 13th Gen Intel(R) Core(TM) i7-13850HX
@5.30 GHz, 32KB/2MB/30MB:L1/L2/L3 15GB DDR5.

51/52

Naive NBody 3D Strong Scaling - Results

Figure 11: Speedup of Naive Gravitationnal NBody 3D

Speedup is limited by runtime overhead, concurrency, memory
bandwidth, data size, etc.

52/52

	C for High Performance
	Managing Memory
	Compilation & Assembly
	Parallelism Basics

