L1: Software Engineering for HPC and Al -
Introduction & Development Environment

P. de Oliveira Castro, M. Jam
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/52

1. Introduction to Software Engineering for HPC and Al
2. HPC Architectures

3. Shell Basics and Scripting
4. Package Management

5. Version Control Systems

2/52

Introduction to Software
Engineering for HPC and Al

Syllabus

* Lecture 1. Introduction & Development Environment

* Lecture 2: Performance Aware C Computing

* Lecture 3: Building, Testing and Debugging Scientific Software

* Lecture 4: Experimental Design, Profiling and
Performance/Energy Optimization

* Lecture 5: HPC for Al & Environmental Impact of Computation

Project: Inference Engine for a Deep Network

3/52

Introduction & Development Environment

* Principles of software engineering applied to HPC and Al.

* Introduction to computing architectures.

* Development tools: shell scripts, package management, Git,
IDEs, etc.

4/52

Analytical solution to the 2-Body Problem

Consider two particles with masses m; and m,, at positions x;
and x4, under gravitational interaction.

G.my.my

my.a) = _|’$,1 _ $2|’3 ({E2 - 1;1)
G.mq.m,

My.Qy = _”xl - 1’2”3 (‘Tl - ‘,EZ)

Solved by Bernoulli in 1734, 2; and 2, can be expressed as simple
equations that depend on time, masses, and initial conditions.

5/52

Why Simulate the n-Body Problem?

« For n = 3 or more, no practical analytical solution exists.

» Even advanced mathematical solutions (e.g., Sundman, 1909)
are too slow for real use.

+ Computer simulations allow us to study the motion of many
interacting particles.

« Efficient algorithms (e.g., Barnes-Hut, Fast Multipole) make
large-scale simulations possible.

* HPC is essential to simulate realistic systems in physics,

astronomy, and Al
» Simulation + HPC = understanding complex systems!

6/52

Naive n-Body Simulation in C

// Compute accelerations based on gravitational forces
for (int i = 0; i < num_particles; i++) {
double ax = 0.0, ay = 0.0, az = 0.0;
for (int j = 0; j < num_particles; j++) {
if (i == j) continue;
double dx = p[jl.x - plil.x;
double dy = p[jl.y - plil.y;
double dz = p[jl.z - plil.z;
double d_sq = dx * dx + dy * dy + dz * dz;

double d = sqrt(d_sq);
double f = G * p[il.m * p[jl.m / (d_sq * d);
ax += f * dx / p[i]l.m;
ay += £ * dy / pl[i].m;
az += f * dz / pl[i].m;
}
plil.ax = ax;
plil.ay = ay;
plil.az = az;

7/52

Naive n-Body Simulation in C

Introduce a small time step dt and update positions based on
gravitational forces.

// Update velocity and positions based on computed accelerations
for (int i = 0; i < num_particles; i++) {

plil.vx += pl[il.ax * dt;

plil.vy += plil.ay * dt;

plil.vz += pl[il.az * dt;

plil.x += pl[i]l.vx * dt;
plil.y += plil.vy * dt;
plil.z += pl[i]l.vz * dat;

8/52

High Performance Computing

Fugaku (2020, 442 petaflops, 7.3 million cores)
* n-body: integrates 1.45 trillion particules per second.
How to achieve such performance?

» Algorithmic improvements:
» Use tree-based methods (Barnes-Hut) to reduce complexity from

O(n?) to O(nlogn) or better.
* Parallelization: distribute computation accross many cores.
» Vectorization: use SIMD instructions to process multiple data
points in parallel.
» Data locality: optimize data access patterns to minimize
memory latency and maximize cache usage.

Compiler optimizations, performance tuning, hardware
acceleration are also crucial.

9/52

HPC Architectures

CPU & Instruction Set (ISA) — quick review

« CPU core executes instructions; machine state = registers,
program counter and flags.

« Assembly encodes the instructions; compilers translate
high-level code into the ISA.

* types: arithmetic/logical, load/store (memory), control flow
(branches, calls), system calls

» Registers are the fastest storage; register pressure influence
performance.

10/52

Example: Intel Core2 Architecture

‘ 128 Entry | 32 KB Instruction Cache
ITLB (8 way) Shared Bus
I 128 Bit Interface
32 Byte Pre-Decode, St
. Fetch Buffer
Instructlo_n 6 Instructions
Fetch Unit 18 Ent
Instruction Queue
1 pop
7+ Entry pop Buffer Shared
2 y10ps L2 Cache
16 w
Register Alias Table (@)
and Allocator
4 pops O
Retirement Register File 256 Entry
‘ I8 25y [RET Rl (i (Re3) H (Program Visible State) L2 DTLB

t 4 pops
32 Entry Reservation Station ‘
Port 0 Port 1 Port 5| Port 3
ALU SSE
e
128 Bit
FADD
Internal Results Bus ¢ 128 Bit 256
128 Bit Bit
32 KB Dual Ported Data Cache | 16 Entry
(8 way) DTLB

Intel Core 2 Architecture

11/52

Pipeline, Memory Hierarchy & Interrupts

* Pipeline increases instruction throughput, classic 5-stages:
» Fetch - Decode — Execute - Memory — Write-back

* Hozards: data hazards (dependencies), control hazards
(branch prediction), resource conflicts.

* Memory hierarchy: registers — L1/L2/L3 caches - DRAM —
persistent storage; spatial and temporal locality drive cache
effectiveness.

» Buses, coherence and NUMA: cross-socket memory access
has higher latency; cache coherence and memory bandwidth
limit scalability.

* Interrupts and exceptions: asynchronous interrupts signal
external events; exceptions/traps handle synchronous faults;
the OS performs context switching and servicing.

12/52

Multicore memory hierarchy (more in next lecture ...)

| Main memory |
bus |
[L1cache] [L1cache| | | [L1cache] [L1 Cache] [L1cache] [LicCache| | | [L1Cache] [L1 Cache]
thread thread thread thread thread thread thread thread

Figure 2: Memory hierarchy

13/52

System hierarchy (physical view)

* Chassis — rack —» node — socket — core — hardware thread: a
multi-level physical organization.

* Nodes often include accelerators (GPUs, TPUs, FPGAs) and
have their own memory (DRAM, sometimes HBM).

* Heterogeneous hardware and multi-level parallelism are the
norm in modern HPC systems.

14/52

Interconnects and /O

Interconnects

« Two key metrics: latency (small-message cost) and bandwidth
(sustained transfer rate).

* Fabrics: Ethernet, InfiniBand, Omni-Path; features to note:
RDMA, kernel bypass, hardware offloads.

* Network topology aoffects routing, contention and scalability.

Storage and I/O

 Parallel file systems provide shared high-throughput storage
for HPC jobs.

» Design I/O to avoid bottlenecks and to fit checkpoint/analysis
cadence (collective I/O, buffer in NVMe).

15/52

Levels of parallelism & mapping

* Inter-node (distributed memory) via MPI; intro-node threading
via OpenMP/pthreads; SIMD/vector units for data-level
parallelism.

+ Accelerator offload (CUDA/HIP/OpenCL) creates hybrid MPI+X
application patterns.

+ Choose mapping to match algorithm characteristics
(communication-heavy vs compute-dense).

Software stack, operations & current trends

» Typical stack: compilers, MPI/libfabric, math libraries, system
libs

» Job schedulers (Slurm/PBS) handle resource allocation,
queues and batch workflows

16/52

Shell Basics and Scripting

What is the Shell?

+ Definition: A shell is a command-line interface to interact with
the operating system.

* Purpose: Execute commands, run programs, and automate
tasks.

* Common Shells: bash, zsh, fish, sh.

* Why Learn It?
* Essential for HPC environments.
» Enables automation and efficient system interaction.

17/52

Basic Shell Commands

* File and Directory Management:
* 1s: List files and directories.
* cd <directory> Change directory.
» pwd: Print current working directory.
mkdir <directory>: Create a new directory.
rm <file>: Remove a file.
* File Viewing:
* cat <file>: Display file contents.
* less <file>: View file contents interactively.
* head <file> Show the first 10 lines.
* tail <file> Show the last 10 lines.

18/52

+ Standard Input/Output:
+ <: Redirect input from a file.
» > Redirect output to a file (overwrite).
« >>: Append output to a file.
* Examples:
» cat file.txt > output.txt: Save contents of file.txt to
output.txt.
» grep "error" log.txt >> errors.txt: Append lines containing
“error” to errors.txt.

19/52

+ Definition: Pipes (1) connect the output of one command to
the input of another.

+ Examples:

* 1s | grep ".txt": List .txt files.

* cat file.txt | wc -1: Count the number of lines in file.txt.
* Why Use Pipes?

» Combine simple commands to perform complex tasks.

» Avoid creating intermediate files.

20/52

Variables and Environment

* Variables:

* VAR=value: Define a variable.
* $VAR: Access the variable's value.

* Environment Variables:

» echo $HOME: Display the home directory.
* export PATH=$PATH:/new/path: Add a directory to the PATH.

* Example:

NODES=4

PROGRAM=

echo

mpirun -np $NODES ./$PROGRAM

21/52

Writing a Simple Script

* What is a Script?
* A file containing a sequence of shell commands.
* Creating a Script:
1. Create afile: vim script.sh.
2. Add commands:

#!/bin/bash
echo

3. Make it executable: chmod +x script.sh
4. Runit: ./script.sh.

22/52

Conditional Stotements

if [-f]; then

echo

./my_hpc_program --config=config.json
else

echo
fi

23/52

for i in {1..5}; do

echo

./my_hpc_program --config=config_$i.json
done

24/52

Functions in Shell Scripts

run_simulation() {
echo
mpirun -np $2 ./simulation_program --config=$1
echo

}

run_simulation 8

25/52

Debugging and Best Practices

* Debugging:
* Run with bash -x script.sh to trace execution.
* Use set -e to exit on errors as the first command.

* Best Practices:
» Use comments (#) to explain code.
» Write reusable functions.
» Check for errors (if [$? -ne 0 1; then).
 Test scripts on small inputs before scaling up.

26/52

Package Management

Package Management: Overview

* Problem Solved: Simplifies software installation, updates, and
dependency management.

* Ensures compatibility between libraries and applications.

» Tracks installed software versions for easy upgrades or
rollbacks.

* Examples: dnf (Fedora/RHEL), apt (Debian/Ubuntu).

27/52

Package Managers for HPC

 Cluster-Specific Tools: spack, guix enable software installation
without root privileges.

* Useful in HPC environments where users lack admin rights.

+ Manage multiple versions of libraries and tools for
reproducibility.

 Facilitate deployment of complex scientific software stacks.

28/52

Language-Specific & Containers

* Language-Specific Managers: pip (Python), cargo (Rust)
simplify languoage ecosystem management.

» Containers: Tools like Docker/Singularity encapsulate
software and dependencies.

* Enable portability across systems and reproducible

environments.

Virtualization/containerization is becoming popular in

modern HPC workflows.

.

29/52

Version Control Systems

What is Version Control?

Version control involves tracking and managing the changes
made to project files.

Each version is associated with a date, an author, and a message.

Developers can work on a copy corresponding to a specific
version.

30/52

* Enhance communication among developers (track code
evolution, messages).

* Isolate experimental developments (work branches).

* Ensure code stability (stable version on the main branch,
ability to revert to a stable version).

* Manage releases (tags for specific versions).

31/52

Vocabulary for Versions

* Version — a recorded state or revision in the project’s history.

+ Commit — a snapshot of the project at a given version with
metadato.

* Branch — an independent line of development (use one
branch per feature/experiment).

+ Tag — a stable label pointing to a specific commit (e.g.,

releases).

Diff / Patch — textual representation of changes between

versions.

+ Conflict — incompatible concurrent edits that must be
resolved manually.

32/52

Vocabulary for Storage

* Repository — storage of the project’s history (local .git and
metadata).

* Clone — a full local copy of the repository including history.

« Working copy — editable files checked out from a repository.

* Index / Staging area — area to stage selected changes for the
next commit.

* Remote — hosted repository (e.g., origin on GitHub/GitLab) for
collaboration.

33/52

Distributed VCS

Distributed Version Control System (DVCS)

Advantages

» Multiple repositories can exist.
 Version control can be performed locally.
* No need for network connectivity.

* Mercurial (2005) (Mozilla, Python, OpenOffice.org)
* Bazaar (2005) (Ubuntu, MySQL)
+ Git (2005) (Linux Kernel, Debian, VLC, Android, Gnome, Qt)

34/52

Introduction to DVCS: Git

+ Git was created in 2005 to version the development of the
Linux kernel.

* Designed as a distributed version control system (replacing
BitKeeper).

» Widely used by projects: Linux Kernel, Debian, VLC, Android,
Gnome, Qit, etc.

+ Accessible via command-line interface.

» Graphical tools available: gitk, qgit.

35/52

Core Principles of Git

* Git does not store differences between commits (unlike SVN).

* Instead, Git stores snapshots of the project’s file hierarchy at
each commit.

* These snapshots are based on hierarchical structures of
objects.

» Git operations revolve around manipulating these objects.

» Each object has a unique hash (SHAT).

+ Git identifies identical objects by comparing their hashes.

* The same content stored in different repositories will always
have the same hash.

36/52

Git Objects

Object types include:

» Blob: Stores file data.

+ Tree: References a list of other trees or blobs.

+ Commit: Points to a single tree, representing a project
snapshot. Includes metadata like timestamp, author, and
parent commits.

» Tag: Labels a specific commit for easy reference.

37/52

Commit Representation

(Git Community Book, p13)

$>tree

| -- README

“-- 1lib
I-- 1inc
I “-- tricks.rb
“-- mylib.rb

2 directories, 3 files

38/52

Commit Structure

(Git Community Book, p14)

98cag..
e8455. .
commit size
7 ™ ogezs.. blob size
tree 0de24 -
tree | size I
arent i
E milil (The MIT License)
author scott
: co blob | eB455 | README Copyriant Ccy 2007 Ton preston]
Gty | Bests tree [1Daf$ | 1ib Fariceve o bty o
my conmit message goes herc A [Fo o G, e e e
ond it Ls really, resily cool * — e
10af£9 bc52a. .
tree | size ot SEC
reguire "grit/index’
blob |be52a mylib.rb reguire "grit/stotus’
tree |b70£8 |inc
1 rodule Grit
«lass <z self
b70f8..
fadla..
tree | size
blob size
blob (i erleli, require ‘grit/git-rutyresest

require ‘grit/git-ruby/file i

nodule Grit
rodile Tricks

39/52

Git Repository

 .git directory:
» Stores the project’s history.
» Contains metadata for version control.
» Located at the root of the project.

$>tree -L 1

|-- HEAD # pointeur vers votre branche courante

I-- config # configuration de vos préférences

|-- description # description de votre projet

| -- hooks/ # pre/post action hooks

|-- 1index # fichier d'index (voir prochaine section)
|-- logs/ # un historique de votre branche

|-- objects/ # vos objets (commits, trees, blobs, tags)
T-- refs/ # pointeurs vers vos branches

Figure 3: Git Repository Contents

40/52

Working Directory

« Current version of project files.
* Files are replaced or removed by Git during branch or version
changes.

Index / Staging Area

» Bridge between the working directory and the repository.

+ Used to group changes for a single commit.

* Only the index content is committed, not the working
directory.

41/52

Basic Commands

» git init: Initiolize a Git repository.

* git clone <repository>. Clone a repository.

* git status: Check the status of the working directory and
staging area.

* git add <file> Stage changes for commit.

* git commit: Commit staged changes.

42/52

Basic Commands (Continued)

* git pull: Update local repository from remote.

* git push: Push local commits to remote repository.

* git log: View commit history.

* git checkout <hash> Switch to a specific commit using its SHAT
hash.

* git branch <branchName>. Create a new branch.

43/52

Branches: Purpose

* Work on changes that diverge from the main branch or
another branch.

* Isolate experimental developments.

» Avoid disrupting shared development efforts.

* Version parallel developments with the option to merge later.

44/52

Branches: Commands

* git branch Or git checkout -b <branchName>: Create a new
branch.

* git checkout <branchName>: Switch to an existing branch.

* git merge <branchName> Merge a branch into the current
branch.

* git branch -d <branchName>: Delete a branch.

* git branch: List all branches and show the current branch.

45/52

Conflict Management

* Conflict: Occurs during branch merging when two changes
offect the same lines.

* Resolution Steps:

1. Merge is paused.

2. Conflict zones are marked in the file.

3. Edit the file to resolve conflicts by choosing one version or
combining changes.

. Verify and validate the resolution.

. Commit the resolved conflict.

(SN

46/52

Correction Methods

* Undo Changes: Use git reset to discard modifications.

* Amend Last Commit: Use git commit --amend to modify the
previous commit.

* Branch-Based Correction: Create a new branch from a
specific version and work from there.

* Rewrite History: Use git rebase to edit commits and history.

* Rewriting History: Interactive rebasing is risky. Only rewrite
commits that haven't been pushed to a remote repository.
Prefer branch-based corrections for safer handling.

47/52

Centralized Collaboration

Network Connection Central
Repository

Ve
___l;’ update Q_u_pi:late
1jc3t - ‘I\: o]
W v

Figure 4: Interactions with a centralized system

(image from Joomla’'s documentation)

48/52

Decentralized with Central Repository

Network Connection Central
"""""""""" Repository

Figure 5: Constrained interactions with a decentralized system

(image from Joomla's documentation)

49/52

Fully Decentralized Collaboration

Central

Repository

= jL:

hEL«::-.al .
|| update
)

pository

. Local
Repository
SRS ol 3 pun P
“ Pl B | pull push ._Fogf— push
commit b T push
[
", push

“.‘pull pu\'l,"’
=
=

=2 cammit
/X]update

LU

Figure é: Interactions with a decentralized system

(imaoe from Joomla's documentation)

50/52

Best Practices for Collaborative Development

Before Development

* Define a developer charter:
* Naming conventions for files, functions, variables.
» Standards for technical documentation and comments.
» Indentation rules (tabs vs spaces).

» Establish a version control strategy.

During Development

* Create isolated commits (one commit = one coherent change).

» Write concise commit messages (mox 60 characters
summarizing the change).

» Add detailed commit descriptions if necessary.

* Regularly update your working copy.

* Share updates with team members.

51/52

References

* The Art of HPC by Victor Eijkhout

* What Every Programmer Should Know About Memory by
Ulrich Drepper

* The Git Community Book

» Tech Talk: Linus Torvalds on Git (YouTube)

» TOPS00 Supercomputers

* Modern Operating Systems by Andrew S. Tanenbaum

* GIT Lecture Notes by Thomas Dufaud (IUT Vélizy - UVSQ)

52/52

https://theartofhpc.com/
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://shafiul.github.io/gitbook/index.html
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.top500.org/

	Introduction to Software Engineering for HPC and AI
	HPC Architectures
	Shell Basics and Scripting
	Package Management
	Version Control Systems

