
L1: Software Engineering for HPC and AI –
Introduction & Development Environment

P. de Oliveira Castro, M. Jam
September 18, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

1/52

1. Introduction to Software Engineering for HPC and AI

2. HPC Architectures

3. Shell Basics and Scripting

4. Package Management

5. Version Control Systems

2/52

Introduction to Software
Engineering for HPC and AI

Syllabus

• Lecture 1: Introduction & Development Environment
• Lecture 2: Performance Aware C Computing
• Lecture 3: Building, Testing and Debugging Scientific Software
• Lecture 4: Experimental Design, Profiling and
Performance/Energy Optimization

• Lecture 5: HPC for AI & Environmental Impact of Computation

Project: Inference Engine for a Deep Network

3/52

Introduction & Development Environment

• Principles of software engineering applied to HPC and AI.
• Introduction to computing architectures.
• Development tools: shell scripts, package management, Git,
IDEs, etc.

4/52

Analytical solution to the 2-Body Problem

Consider two particles with masses 𝑚1 and 𝑚2 at positions 𝑥1
and 𝑥2 under gravitational interaction.

𝑚1.𝑎1 = − 𝐺.𝑚1.𝑚2
‖𝑥1 − 𝑥2‖3 (𝑥2 − 𝑥1)

𝑚2.𝑎2 = − 𝐺.𝑚1.𝑚2
‖𝑥1 − 𝑥2‖3 (𝑥1 − 𝑥2)

Solved by Bernoulli in 1734, 𝑥1 and 𝑥2 can be expressed as simple
equations that depend on time, masses, and initial conditions.

5/52

Why Simulate the n-Body Problem?

• For 𝑛 = 3 or more, no practical analytical solution exists.
• Even advanced mathematical solutions (e.g., Sundman, 1909)
are too slow for real use.

• Computer simulations allow us to study the motion of many
interacting particles.
• Efficient algorithms (e.g., Barnes-Hut, Fast Multipole) make
large-scale simulations possible.

• HPC is essential to simulate realistic systems in physics,
astronomy, and AI.
• Simulation + HPC = understanding complex systems!

6/52

Naive n-Body Simulation in C

// Compute accelerations based on gravitational forces
for (int i = 0; i < num_particles; i++) {

double ax = 0.0, ay = 0.0, az = 0.0;
for (int j = 0; j < num_particles; j++) {
if (i == j) continue;
double dx = p[j].x - p[i].x;
double dy = p[j].y - p[i].y;
double dz = p[j].z - p[i].z;
double d_sq = dx * dx + dy * dy + dz * dz;
double d = sqrt(d_sq);
double f = G * p[i].m * p[j].m / (d_sq * d);
ax += f * dx / p[i].m;
ay += f * dy / p[i].m;
az += f * dz / p[i].m;

}
p[i].ax = ax;
p[i].ay = ay;
p[i].az = az;

}

7/52

Naive n-Body Simulation in C

Introduce a small time step dt and update positions based on
gravitational forces.
// Update velocity and positions based on computed accelerations
for (int i = 0; i < num_particles; i++) {

p[i].vx += p[i].ax * dt;
p[i].vy += p[i].ay * dt;
p[i].vz += p[i].az * dt;

p[i].x += p[i].vx * dt;
p[i].y += p[i].vy * dt;
p[i].z += p[i].vz * dt;

}

8/52

High Performance Computing

Fugaku (2020, 442 petaflops, 7.3 million cores)

• n-body: integrates 1.45 trillion particules per second.

How to achieve such performance?

• Algorithmic improvements:
• Use tree-based methods (Barnes-Hut) to reduce complexity from

𝑂(𝑛2) to 𝑂(𝑛 log 𝑛) or better.
• Parallelization: distribute computation accross many cores.
• Vectorization: use SIMD instructions to process multiple data
points in parallel.

• Data locality: optimize data access patterns to minimize
memory latency and maximize cache usage.

Compiler optimizations, performance tuning, hardware
acceleration are also crucial.

9/52

HPC Architectures

CPU & Instruction Set (ISA) — quick review

• CPU core executes instructions; machine state = registers,
program counter and flags.

• Assembly encodes the instructions; compilers translate
high-level code into the ISA.
• types: arithmetic/logical, load/store (memory), control flow
(branches, calls), system calls

• Registers are the fastest storage; register pressure influence
performance.

10/52

Example: Intel Core2 Architecture

128 Entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

Instruction
Fetch Unit

18 Entry
Instruction Queue

7+ Entry µop Buffer

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB)
Retirement Register File
(Program Visible State)

Shared Bus
Interface

Unit

Shared
L2 Cache
(16 way)

256 Entry
L2 DTLB

Micro-
code

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

32 Entry Reservation Station

ALU ALU
SSE

Shuffle
ALU

SSE
Shuffle
MUL

ALU
Branch

SSE
ALU

128 Bit
FMUL
FDIV

128 Bit
FADD

Store
Address

Store
Data

Load
Address

Memory Ordering Buffer
(MOB)

32 KB Dual Ported Data Cache
(8 way)

16 Entry
DTLB

Port 0 Port 1 Port 2Port 3 Port 4Port 5

Internal Results Bus
LoadStore

128 Bit
128 Bit

4 µops

4 µops

4 µops

4 µops 1 µop 1 µop 1 µop

128 Bit

6 Instructions

4 µops

256
Bit

Intel Core 2 Architecture

Figure 1: Intel Core2 Architecture (CC-by-SA, Wikipedia)

11/52

Pipeline, Memory Hierarchy & Interrupts

• Pipeline increases instruction throughput, classic 5-stages:
• Fetch → Decode → Execute → Memory → Write-back

• Hazards: data hazards (dependencies), control hazards
(branch prediction), resource conflicts.

• Memory hierarchy: registers → L1/L2/L3 caches → DRAM →
persistent storage; spatial and temporal locality drive cache
effectiveness.

• Buses, coherence and NUMA: cross-socket memory access
has higher latency; cache coherence and memory bandwidth
limit scalability.

• Interrupts and exceptions: asynchronous interrupts signal
external events; exceptions/traps handle synchronous faults;
the OS performs context switching and servicing.

12/52

Multicore memory hierarchy (more in next lecture …)

Figure 2: Memory hierarchy

13/52

System hierarchy (physical view)

• Chassis → rack → node → socket → core → hardware thread: a
multi-level physical organization.

• Nodes often include accelerators (GPUs, TPUs, FPGAs) and
have their own memory (DRAM, sometimes HBM).

• Heterogeneous hardware and multi-level parallelism are the
norm in modern HPC systems.

14/52

Interconnects and I/O

Interconnects
• Two key metrics: latency (small-message cost) and bandwidth
(sustained transfer rate).

• Fabrics: Ethernet, InfiniBand, Omni-Path; features to note:
RDMA, kernel bypass, hardware offloads.

• Network topology affects routing, contention and scalability.

Storage and I/O
• Parallel file systems provide shared high-throughput storage
for HPC jobs.

• Design I/O to avoid bottlenecks and to fit checkpoint/analysis
cadence (collective I/O, buffer in NVMe).

15/52

Levels of parallelism & mapping

• Inter-node (distributed memory) via MPI; intra-node threading
via OpenMP/pthreads; SIMD/vector units for data-level
parallelism.

• Accelerator offload (CUDA/HIP/OpenCL) creates hybrid MPI+X
application patterns.

• Choose mapping to match algorithm characteristics
(communication-heavy vs compute-dense).

Software stack, operations & current trends
• Typical stack: compilers, MPI/libfabric, math libraries, system
libs

• Job schedulers (Slurm/PBS) handle resource allocation,
queues and batch workflows

16/52

Shell Basics and Scripting

What is the Shell?

• Definition: A shell is a command-line interface to interact with
the operating system.

• Purpose: Execute commands, run programs, and automate
tasks.

• Common Shells: bash, zsh, fish, sh.
• Why Learn It?

• Essential for HPC environments.
• Enables automation and efficient system interaction.

17/52

Basic Shell Commands

• File and Directory Management:
• ls: List files and directories.
• cd <directory>: Change directory.
• pwd: Print current working directory.
• mkdir <directory>: Create a new directory.
• rm <file>: Remove a file.

• File Viewing:
• cat <file>: Display file contents.
• less <file>: View file contents interactively.
• head <file>: Show the first 10 lines.
• tail <file>: Show the last 10 lines.

18/52

Redirections

• Standard Input/Output:
• <: Redirect input from a file.
• >: Redirect output to a file (overwrite).
• >>: Append output to a file.

• Examples:
• cat file.txt > output.txt: Save contents of file.txt to
output.txt.

• grep "error" log.txt >> errors.txt: Append lines containing
“error” to errors.txt.

19/52

Pipes

• Definition: Pipes (|) connect the output of one command to
the input of another.

• Examples:
• ls | grep ".txt": List .txt files.
• cat file.txt | wc -l: Count the number of lines in file.txt.

• Why Use Pipes?
• Combine simple commands to perform complex tasks.
• Avoid creating intermediate files.

20/52

Variables and Environment

• Variables:
• VAR=value: Define a variable.
• $VAR: Access the variable’s value.

• Environment Variables:
• echo $HOME: Display the home directory.
• export PATH=$PATH:/new/path: Add a directory to the PATH.

• Example:
NODES=4
PROGRAM="my_hpc_program"
echo "Running $PROGRAM on $NODES MPI nodes..."
mpirun -np $NODES ./$PROGRAM

21/52

Writing a Simple Script

• What is a Script?
• A file containing a sequence of shell commands.

• Creating a Script:
1. Create a file: vim script.sh.
2. Add commands:

#!/bin/bash
echo "Hello, World!"

3. Make it executable: chmod +x script.sh.
4. Run it: ./script.sh.

22/52

Conditional Statements

if [-f "config.json"]; then
echo "config.json exists. Running the HPC program..."
./my_hpc_program --config=config.json

else
echo "Error: config.json does not exist."

fi

23/52

Loops

for i in {1..5}; do
echo "Running simulation with parameter set $i..."
./my_hpc_program --config=config_$i.json

done

24/52

Functions in Shell Scripts

run_simulation() {
echo "Starting with config file: $1 and $2 nodes..."
mpirun -np $2 ./simulation_program --config=$1
echo "Simulation completed."

}
run_simulation "simulation_config.json" 8

25/52

Debugging and Best Practices

• Debugging:
• Run with bash -x script.sh to trace execution.
• Use set -e to exit on errors as the first command.

• Best Practices:
• Use comments (#) to explain code.
• Write reusable functions.
• Check for errors (if [$? -ne 0]; then).
• Test scripts on small inputs before scaling up.

26/52

Package Management

Package Management: Overview

• Problem Solved: Simplifies software installation, updates, and
dependency management.

• Ensures compatibility between libraries and applications.
• Tracks installed software versions for easy upgrades or
rollbacks.

• Examples: dnf (Fedora/RHEL), apt (Debian/Ubuntu).

27/52

Package Managers for HPC

• Cluster-Specific Tools: spack, guix enable software installation
without root privileges.

• Useful in HPC environments where users lack admin rights.
• Manage multiple versions of libraries and tools for
reproducibility.

• Facilitate deployment of complex scientific software stacks.

28/52

Language-Specific & Containers

• Language-Specific Managers: pip (Python), cargo (Rust)
simplify language ecosystem management.

• Containers: Tools like Docker/Singularity encapsulate
software and dependencies.

• Enable portability across systems and reproducible
environments.

• Virtualization/containerization is becoming popular in
modern HPC workflows.

29/52

Version Control Systems

What is Version Control?

Version control involves tracking and managing the changes
made to project files.

Each version is associated with a date, an author, and a message.
Developers can work on a copy corresponding to a specific
version.

30/52

Objectives

• Enhance communication among developers (track code
evolution, messages).

• Isolate experimental developments (work branches).
• Ensure code stability (stable version on the main branch,
ability to revert to a stable version).

• Manage releases (tags for specific versions).

31/52

Vocabulary for Versions

• Version — a recorded state or revision in the project’s history.
• Commit — a snapshot of the project at a given version with
metadata.

• Branch — an independent line of development (use one
branch per feature/experiment).

• Tag — a stable label pointing to a specific commit (e.g.,
releases).

• Diff / Patch — textual representation of changes between
versions.

• Conflict — incompatible concurrent edits that must be
resolved manually.

32/52

Vocabulary for Storage

• Repository — storage of the project’s history (local .git and
metadata).

• Clone — a full local copy of the repository including history.
• Working copy — editable files checked out from a repository.
• Index / Staging area — area to stage selected changes for the
next commit.

• Remote — hosted repository (e.g., origin on GitHub/GitLab) for
collaboration.

33/52

Distributed VCS

Distributed Version Control System (DVCS)

Advantages
• Multiple repositories can exist.
• Version control can be performed locally.
• No need for network connectivity.

Examples
• Mercurial (2005) (Mozilla, Python, OpenOffice.org)
• Bazaar (2005) (Ubuntu, MySQL)
• Git (2005) (Linux Kernel, Debian, VLC, Android, Gnome, Qt)

34/52

Introduction to DVCS: Git

History
• Git was created in 2005 to version the development of the
Linux kernel.

• Designed as a distributed version control system (replacing
BitKeeper).

Context
• Widely used by projects: Linux Kernel, Debian, VLC, Android,
Gnome, Qt, etc.

• Accessible via command-line interface.
• Graphical tools available: gitk, qgit.

35/52

Core Principles of Git

• Git does not store differences between commits (unlike SVN).
• Instead, Git stores snapshots of the project’s file hierarchy at
each commit.

• These snapshots are based on hierarchical structures of
objects.

• Git operations revolve around manipulating these objects.

Hash
• Each object has a unique hash (SHA1).
• Git identifies identical objects by comparing their hashes.
• The same content stored in different repositories will always
have the same hash.

36/52

Git Objects

Object types include:

• Blob: Stores file data.
• Tree: References a list of other trees or blobs.
• Commit: Points to a single tree, representing a project
snapshot. Includes metadata like timestamp, author, and
parent commits.

• Tag: Labels a specific commit for easy reference.

37/52

Commit Representation

(Git Community Book, p13)

38/52

Commit Structure

(Git Community Book, p14)

39/52

Git Repository

• .git directory:
• Stores the project’s history.
• Contains metadata for version control.
• Located at the root of the project.

Figure 3: Git Repository Contents

40/52

Working Directory

• Current version of project files.
• Files are replaced or removed by Git during branch or version
changes.

Index / Staging Area
• Bridge between the working directory and the repository.
• Used to group changes for a single commit.
• Only the index content is committed, not the working
directory.

41/52

Basic Commands

• git init: Initialize a Git repository.
• git clone <repository>: Clone a repository.
• git status: Check the status of the working directory and
staging area.

• git add <file>: Stage changes for commit.
• git commit: Commit staged changes.

42/52

Basic Commands (Continued)

• git pull: Update local repository from remote.
• git push: Push local commits to remote repository.
• git log: View commit history.
• git checkout <hash>: Switch to a specific commit using its SHA1
hash.

• git branch <branchName>: Create a new branch.

43/52

Branches: Purpose

• Work on changes that diverge from the main branch or
another branch.

• Isolate experimental developments.
• Avoid disrupting shared development efforts.
• Version parallel developments with the option to merge later.

44/52

Branches: Commands

• git branch or git checkout -b <branchName>: Create a new
branch.

• git checkout <branchName>: Switch to an existing branch.
• git merge <branchName>: Merge a branch into the current
branch.

• git branch -d <branchName>: Delete a branch.
• git branch: List all branches and show the current branch.

45/52

Conflict Management

• Conflict: Occurs during branch merging when two changes
affect the same lines.

• Resolution Steps:
1. Merge is paused.
2. Conflict zones are marked in the file.
3. Edit the file to resolve conflicts by choosing one version or
combining changes.

4. Verify and validate the resolution.
5. Commit the resolved conflict.

46/52

Correction Methods

• Undo Changes: Use git reset to discard modifications.
• Amend Last Commit: Use git commit --amend to modify the
previous commit.

• Branch-Based Correction: Create a new branch from a
specific version and work from there.

• Rewrite History: Use git rebase to edit commits and history.

Warning
• Rewriting History: Interactive rebasing is risky. Only rewrite
commits that haven’t been pushed to a remote repository.
Prefer branch-based corrections for safer handling.

47/52

Centralized Collaboration

Figure 4: Interactions with a centralized system

(image from Joomla’s documentation)

48/52

Decentralized with Central Repository

Figure 5: Constrained interactions with a decentralized system

(image from Joomla’s documentation)

49/52

Fully Decentralized Collaboration

Figure 6: Interactions with a decentralized system

(image from Joomla’s documentation)
50/52

Best Practices for Collaborative Development

Before Development
• Define a developer charter:

• Naming conventions for files, functions, variables.
• Standards for technical documentation and comments.
• Indentation rules (tabs vs spaces).

• Establish a version control strategy.

During Development
• Create isolated commits (one commit = one coherent change).
• Write concise commit messages (max 60 characters
summarizing the change).

• Add detailed commit descriptions if necessary.
• Regularly update your working copy.
• Share updates with team members.

51/52

References

• The Art of HPC by Victor Eijkhout
• What Every Programmer Should Know About Memory by
Ulrich Drepper

• The Git Community Book
• Tech Talk: Linus Torvalds on Git (YouTube)
• TOP500 Supercomputers
• Modern Operating Systems by Andrew S. Tanenbaum
• GIT Lecture Notes by Thomas Dufaud (IUT Vélizy - UVSQ)

52/52

https://theartofhpc.com/
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://shafiul.github.io/gitbook/index.html
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.top500.org/

	Introduction to Software Engineering for HPC and AI
	HPC Architectures
	Shell Basics and Scripting
	Package Management
	Version Control Systems

